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Abstract

We present a specification and implementation of a generic multiarray API based on A

Mathematics of Arrays in the general purpose research language Magnolia. We show how

we can lift the reasoning on arrays to a more abstract level, and how this enables us to

precisely manipulate arrays independent of hardware memory layouts.
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Chapter 1

Introduction

Gordon Moore postulated in the 1960s that the number of transistors in a processing

unit would double every two years [14]. This postulate largely holds true as we enter the

2020s, with computing power reaching exascale levels (1018 FLOPS) in 2018. As hardware

continues to evolve we are reliant on software capable of adapting to both current and

future architectures, whilst remaining maintainable.

Fields of both research and industry that deal with large volumes of data often utilize

HPC – i.e. supercomputers or clusters – to process and perform calculations efficiently.

This creates the need for software capable of leveraging distributed architectures, whilst

remaining maintainable. MoA [40] is a calculus for working with arrays, generalizing the

notion of an array to the concepts of shapes and dimensions. A big motivation behind

creating this calculus was how arrays are mapped down to hardware, and how we can

rearrange and manipulate the arrays independently of memory layout without losing the

ability to target specific architectures.

In this thesis we will explore the MoA calculus, using the generic programming lan-

guage Magnolia [2, 5] as our vehicle to implement a generic array API based on MoA. We

will observe how MoA allows us to manipulate arrays on a hardware independent level

without compromising neither performance or supported hardware.

1.1 Motivations

There are numerous domains in science and industry that rely on discretizations of for-

mally defined physics models. These models are reliant on numerical solutions in order
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to be applicable to real-world problems, and discretization of PDEs in order to be able

to compute finite solutions. A good example is the Navier-Stokes equations, which are

used to model the behavior of fluids, e.g. wind and water. In fields such as meteorology

and industry sectors such as wind farms, fast and accurate modeling of wind and water

is essential. Work by BLDL at the University of Bergen has contributed to the idea

that mapping array expressions that can run efficiently on arbitrary hardware is worth

exploring. A recurring case study from this research is how to use arrays to compute

numerical solutions to PDEs on different hardware, potentially bringing together domain

experts in fields such as meteorology who are looking for both faster and more portable

ways to simulate data independent of current computing power.

1.2 Contribution

This thesis is comprised out of existing theory in conjunction with the authors own work

on applications. Mainly, A Mathematics of Arrays [40] is the work of Lenore Mullin,

with subsequent publications on MoA being the work of Mullin and her co-authors.

More recent literature on MoA [6, 7, 9] is the work of researchers associated with BLDL

in collaboration with Mullin. Additionally, Magnolia is a research language under active

development at BLDL. Among the related works are two compiler implementations [2, 5].

What this thesis aims to do is to explore the MoA calculus through the lens of formal

specifications. We establish a baseline of understanding of multiarrays and Magnolia,

and then we present a specification and implementation for a subset of MoA.

1.3 Thesis Outline

The thesis is structured as follows:

� Chapter 2 introduces the relevant parts of the MoA theory,

� Chapter 3 introduces the Magnolia programming language

� Chapter 4 explores arrays in convensional programming languages, and we moti-

vate the problem at hand by highlighting a relevant domain where efficient array

computations are important,
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� Chapter 5 describes an implementation of a subset of MoA in the Magnolia pro-

gramming language,

� Chapter 6 consists of a collaborative article highlighting current work on being car-

ried out at BLDL, and a closer look at an experimental implementation in CUDA,

� Chapter 7 rounds off the thesis with discussion and reflection on both the work that

has been done and future work.
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Chapter 2

A Mathematics of Arrays

2.1 Introduction

MoA is a theoretical framework for multidimensional arrays, defining them by the notion

of their shape. Its inception was the PhD thesis of Lenore Mullin in 1988 [40], and

she has been the driving force behind promoting MoA and its applications in parallel

computing [16], HPC [15] etc.

The original presentation of MoA draws heavy inspiration from Ken Iverson and

APL [25], both in its approach to defining arrays and its notational style. More recent

publications depart from the APL roots of the theory [1, 6, 7], focusing instead on its ideas

of creating dense array expressions operating on single multiarrays. In this chapter we

present an overview of the core theory, first as presented in the original papers and then

as given in recent literature. We then draw comparisons between the two approaches.

2.2 The Original MoA Approach

Following from APL where the centerpiece data type is the multidimensional array, MoA

revolves around a single array type. Unary operators and infix binary operations are used

without any specified operator precedence, and parentheses are used to dictate order of

application. Expressions associate implicitly to the right, following from APL.
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2.2.1 Terminology

Every array has a dimensionality, often denoted by an integer superscript. E.g. ξ3 is

a 3-dimensional array. An arrays shape denotes the length of each of its dimensions,

collected in a 1-dimensional array. E.g. ξ3 would have a shape of the form ⟨i j k⟩, where
i, j, k ∈ N+.

Some arrays with a specific dimensionality are more commonly used than others, and

as such they are given unique names.

� A scalar refers to a 0-dimensional array, i.e. an array with zero dimensions and an

empty shape. The literature denotes the empty scalar as σ.

� A vector in MoA is a 1-dimensional array of elements with ordered integer indices.

In the literature, the empty vector is denoted Θ, and vectors in general are denoted

with the typical arrow notation. E.g. v⃗ = ⟨1 2 3⟩ is a vector with 3 elements.

� A matrix is a 2-dimensional array.

2.2.2 Unary Operations for Array Shapes

� δ (Delta): takes an array and returns its dimensions as a scalar. For scalar argu-

ments δσ = 0.

� ρ (Rho): takes an array and returns its shape as a vector. In particular ρσ = Θ.

� τ (Tau): takes an array returns the total number of objects in the array as a scalar.

τσ = 1.

Example: if we have a vector v⃗ = ⟨1 2 3⟩, τ v⃗ = 3.

� ι (iota): takes as argument a scalar σ ∈ N and generates a vector containing the

integer sequence 0 . . . (σ − 1). For σ = 0, ι0 ≡ Θ.
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2.2.3 Indexing

Indexing can be done a few different ways. v⃗ = ⟨1 2 3⟩ τ v⃗ = 3

1. Scalar indexing

v⃗[0] = 1

v⃗[1] = 2

v⃗[2] = 3

2. Vector indexing, given that the components of the index vector all are valid indices

for the indexed vector

u⃗ = ⟨2 1 0⟩
τ u⃗ = 3

v⃗[u⃗] = ⟨3 2 1⟩

2.2.4 Psi indexing

The psi indexing function ψ takes as a left argument an index vector and right argument

an n-dimensional array.

We will begin defining the few special cases for ψ, and then move on to the general

form. For the empty scalar σ and the empty vector Θ acts as neutral elements:

Θ ψ σ ≡ σ

Θ ψ x⃗ ≡ x⃗

Θ ψ ζn ≡ ζn

0 ≤ i < (τ x⃗) ⟨i⟩ ψ x⃗ ≡ x⃗[i]

In general, for an index vector i⃗ satisfying the bounds1 0 ≤∗ i⃗ <∗ (ρζn):

i⃗ ψ ζn = ζn [⃗i[0]; . . . ; i⃗[n− 1]]

1In her dissertation, Mullin introduces the notation ξl R
∗ ξr to talk about constraints on indices. It

is used to express the condition that i⃗ is a valid index vector. E.g. 0 ≤∗ i⃗ <∗ (ρξn).
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Partial indexing

Until now we have assumed indexing arguments to ψ to be total, i.e. (τ i⃗) = δζn = n.

When i⃗ is a total index, i⃗ ψ ζn will return a scalar with an empty shape. Now we are

going to introduce a partial index, also called a short index, i.e. an index vector that

does not access precisely to the scalar level, but rather to a subarray level. We impose

some restrictions on the partial index vectors, to make it play nicely in bounds of the

accessed arrays.

For an index vector j⃗ and a n-dimensional array ξn:

Given 0 ≤∗ j⃗ <∗ ((τ j⃗) ↑ (ρξn))

then 0 ≤ (τ j⃗) ≤ δ(ξn)

When j⃗ is a partial index, the shape of the indexed subarray is given as ρ(⃗j ψ ξn) =

(τ j⃗) ↓ (ρξn).

2.2.5 Take and Drop

We can define the ↑ (take) and ↓ (drop) operators as shorthand for indexing on the

primary axis2. By take we are accessing the first n subarrays of the given array, keeping

them. Conversely, drop will ignore the n first subarrays and keep the rest in an array.

When applied to a 1-dimensional array, take and drop accesses down to the element level.

Example (1 dimensional):

x⃗ = ⟨1 2 3 4 5 6⟩
τ x⃗ = 6

x⃗[⟨0 1 2⟩] = 3 ↑ x⃗ = −3 ↓ x⃗ = ⟨1 2 3⟩
x⃗[⟨4 5⟩] = −2 ↑ x⃗ = 4 ↓ x⃗ = ⟨5 6⟩

2In the literature the theory is usually presented in row-major fashion, and as such when we refer to
the primary axis we are talking about the outmost row-axis unless specified otherwise.
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Example (δ(A) > 1):

A =



1 2 3 4

5 6 7 8

9 10 11 12




0 ↑ A = ⟨1 2 3 4⟩

0 ↓ A =

[
5 6 7 8

9 10 11 12

]

2.2.6 Catenate

Given two vectors x⃗ and y⃗, their (con)catenation x⃗ # y⃗ yields a vector by indexing them

together. The resulting vector τ(x⃗ # y⃗) ≡ (τ x⃗) + (τ y⃗).

Catenating a vector with a scalar is legal, ”promoting”s the scalar to a one-element

vector.

τ(x⃗ # σ) ≡ (τ x⃗) + 1

Catenation of arrays

Arrays can also be catenated on the primary axis, given that the shapes of the rest of

the dimensions match. The shape of two catenated arrays is

((1 ↑ (ρξn)) + (1 ↑ (ρζn))) # (1 ↓ (ρζn))

Example:

A =



1 2

5 6

9 10


 B =



3 4

7 8

11 12




A # B =



1 2 3 4

5 6 7 8

9 10 11 12
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2.2.7 Array Transformations

Here we will introduce three operations for manipulating the indexing of existing arrays:

reverse, rotate and transpose.

Reverse

The unary reverse operation ϕ takes an array argument and reverses the order of the

elements on the primary axis. It does not change the shape of the array.

ρ(ϕξn) ≡ ρξn

For valid indices 0 ≤ i < (ρξn)[0]:

⟨i⟩ ψ (ϕξn) ≡ ⟨(ρξn)[0]− (i+ 1)⟩ ψ ξn

Example:

ρA = ⟨3 4⟩ ρ(ϕA) = ⟨3 4⟩ = ρA

A =



1 2 3 4

5 6 7 8

9 10 11 12


ϕA =



9 10 11 12

5 6 7 8

1 2 3 4




Rotate

Rotate - ⊖ - takes a scalar left argument and an array on the right. σ ⊖ ξn shifts the

order of the elements on the primary axis by σ. ρ(σ ⊖ ξn) ≡ ρξn.

σ ⊖ ξn ≡




(σ ↓ ξn) # (σ ↑ ξn), 0 < σ ≤ (ρξn)[0]

(σ ↑ ξn) # (σ ↓ ξn), −(ρξn)[0] ≤ σ < 0

Example:

ρA = ⟨3 4⟩ ρ(1⊖ A) = ⟨3 4⟩ = ρA

A =



1 2 3 4

5 6 7 8

9 10 11 12


 1⊖ A =



5 6 7 8

9 10 11 12

1 2 3 4
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Transpose

Transpose - ∅- reverses the order of the indices. The resulting shape of the transposed

array is the reversal of the original shape.

ρ( ∅ξn) ≡ ϕ(ρξn)

For valid index vectors 0 ≤∗ i⃗ <∗ ϕ(ρξn),

i⃗ ψ ( ∅ξn) ≡ (ϕ⃗i) ψ ξn

Example:

ρA = ⟨3 4⟩ ρ( ∅A) = ⟨4 3⟩ = ϕ(ρA)

A =



1 2 3 4

5 6 7 8

9 10 11 12


 ∅A =




1 5 9

2 6 10

3 7 11

4 8 12




2.2.8 Denotational Normal Form

DNF is a semantics-only, layout-agnostic normal form for array expressions, and repre-

sents the most ”cost-effective” way to perform operations on any given array. Any MoA

expression can be rewritten as a DNF expression. What we want to achieve by reducing

an expression to its corresponding DNF is to end up with (ideally) only terms utilizing

the ψ operator, which in essence is an array access (cheap). By layout-agnostic we mean

that this reduction to normal form is performed before any mapping to hardware takes

place, meaning optimizations for specific hardware architectures will take place later, and

that we don’t have to worry about different layouts when performing the conversion to

DNF.
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ψ-reduction

ψ-reduction is the formal process of transforming an array expression stepwise into its

normal form. It is a mechanical process where each operator has its defined rewrite

rules. The complete list of rewrite rules were defined and published already in the 1990s,

including that ψ-reduction could be performed by a computer [33]. It is the first step in

using MoA for efficient array calculations.

In this section we will be discussing the semantics of ψ-reduction. The paper presented

in Chapter 6 applies ψ-reduction as part of optimizing array expressions.

Shape Analysis

In order for us to perform a reduction, the shape of both the initial variables of the array

expression and the partial results needs to be computed. We also need to define the

valid indices (or index vectors) of the result. The valid indices for the expression can be

decribed using:

0 ≤ i < (τE) for scalar indices or 0 ≤∗ i⃗ ≤∗ (ρE) for index vectors

Reduction

Using valid indices as left side argument of ψ, we start out on the form

⟨i⟩ ψ E for scalar indices or i⃗ ψ E for index vectors

The reduction is performed simply by applying what definitions/properties/identities that

apply to the given expression. Mullin and Thibault defines a complete list of reduction

rules, and shows that the reduction process is deterministic.

2.2.9 Operational Normal Form

Memory layouts in hardware are linear. What separates different systems are how they are

accessed, with factors such as the number of processors and processor cores also affecting

the final physical layout. Here we will introduce the ONF, a collection of functions to

both transform and work with array expressions in a hardware specific context. This

part of the MoA algebra is not in the scope of this thesis, but an overview is provided for

completeness.
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Ravel

Ravel – rav – takes an array expression and returns it as a vector, flattening its elements

into a one dimensional array. rav can be performed both row-major and column-major,

depending on the target memory layout.

Reshape

Reshape - p̂. Takes a shape s and an array A and returns A with the same elements but

with the shape s. I.e. ρ(reshape(s, A)) = s.

Gamma

To be able to map the DNF efficiently and optimally down to ONF we need to know two

things. We need knowledge about the memory layout where our array is being mapped to,

and we need an array expression in DNF form. We now introduce a family of functions

γ which we can use to express the relation between an index and an offset in flat memory.

For vectors, the γ function is layout independent, as vectors are already one-

dimensional and contiguous:

γ(⟨i⟩, v⃗) ≡ v⃗[i]

The γ functions for for n-dimensional arrays depend on the target memory layout.

We will give an example on how one can define a γ function for a row-major architecture.

Given an n-dimensional array ζn with shape ρ(ζn) = ⟨s0 . . . sn−1⟩ and valid index vectors

0 ≤∗ i⃗ <∗ ρζn, we can give the following relation:

γrow(⃗i, ρ(ζ
n)) = γrow(⟨i0 . . . in−1⟩, ⟨s0 . . . sn−1⟩) ≡ in−1+sn−1×γrow(⟨i0 . . . in−2⟩, ⟨s0 . . . sn−2⟩)

We are now equipped with the operations we need to manipulate arrays to fit specific

memory layouts. This concludes our small introduction to the original MoA formalism.
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2.3 BLDL Approach

For the last few years, effort has been put into creating a complete pipeline for using MoA

in tandem with the Magnolia programming language to generate high-performing array

expressions. This work has been carried out by researchers at BLDL in collaboration with

Mullin, resulting in a series of papers [6, 7, 9]. A case study on creating an efficient PDE

solver serves as the recurring domain of interest. The work includes important additions

to the existing theory, as well as required proofs for existing theory.

Here we will briefly introduce this approach to the theory. As the two approaches

constitute the same theory, we will focus on the specific contributions of the articles.

2.3.1 Canonical rewrite system

Chetioui et al. approaches MoA with a specific goal in mind, namely to define the

minimal array API decribed in Burrows et al. in terms of the MoA formalism. A subset

of MoA is sufficient to investigate this API, and the paper provides rewrite rules for these

operations, along with proofs that the rules form a canonical rewrite system. That is,

the system is is confluent, and any expression can be rewritten to its normal form in a

finite number of steps.

2.3.2 Padding

Padding in MoA was introduced by Chetioui et al. as a way to introduce reduncancy

in arrays. When working with high-performance computers, a limiting factor for com-

putational efficiency is data locality. Large distributed systems might not have sufficient

global memory, relying on message passing systems such as MPI to transfer data between

components running parallel computations. By prepending or appending existing data

to the array, one can limit the need for interaction between different processors. Chetioui

et al. demonstrated significant runtime improvements for the PDE solver by padding the

arrays.
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2.4 Reflection on the approaches

Mullin was heavily inspired by APL when developing the original MoA theory. This is

reflected in both in choice of syntax, as well as semantics. Notation used in MoA as

presented by Mullin often follows directly from APL. Some semantic rules carry over

as well, such as operators being implicitly associated to the right if no parentheses are

provided.

The contemporary approach makes an effort to step away from the APL roots. While

faithful and equivalent to the original theory, steps are made to create a more seamless

transition into a Magnolia flavoured notational style. All operations are now defined

consistently throughout in terms of the ψ operator, on the form index ψ op(args), leaving

the recursive definitions behind. There exist multiple reasons to why this notational style

could be preferable.

1. The notational style is well suited for application in parallel computing. By de-

scribing the result at each index, the computation can easily be distributed between

different processes.

2. Magnolia explicitly disallows recursion, so by relying on recursive definitions there

would be a notational gap between implementations and the underlying theory.

3. The recent publications are focused on a limited subset of the theory, keeping

notation consistent is more practical.

The approaches are also shaped by their respective goals. In the introduction of

her thesis, Mullin argues that MoA enables verification of computer architecture design,

building on VLSI design, i.e. design of integrated circuits. The focus of the papers

produced at BLDL has been array transformations. Designing a pipeline for creating

dense, hardware-independent array expressions in DNF which then can be translated to

padded hardware-specific expressions well suited for distributed computing. Combined

with Magnolia this creates a platform for theoretically well founded, portable array code

not limited to existing hardware.

With these areas of applications in mind, it highlights the versatility of MoA as a

theoretical framework for multiarrays.
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Chapter 3

Magnolia

Magnolia is a research programming and specification language based on institution the-

ory [13], with the goal of fully capturing Stepanov-style generics [10]. This type of generics

is known as genericity by property in terms of the Gibbons taxonomy [12], which describes

structures and algorithms in terms of syntactic and semantic requirements. To describe

the type of genericity provided by Magnolia, Chetioui et al. coined the term genericity by

host language. Magnolia is dependent on being parameterized by a host language because

it provides no base data types or data structures, giving rise to a minor distinction.

Here we will give an introduction to the Magnolia specification and programming lan-

guage.

3.1 The Magnolia Language

In Magnolia there are four top level module types. A signature is a collection of generic

type - and function names. We can equip a signature with axioms, stating behavior of

the defined types and functions. Signatures with axioms together form a concept. The

implementation module expands on the functionality of the signature by allowing us to

provide generic implementations for the defined types and functions. This is done either

by providing an implementation in a backend language of choice1, or by providing bodies

to the defined functions. Types and structures expecting an external implementation are

prefixed with the require keyword. In addition to functions, Magnolia also supports

1At the time of writing this thesis, C++ and Python [8] are supported backend languages
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predicates and procedures. Whereas functions are immutable, procedures can modify

state of its input variables depending on its mode. Input parameters to procedures

must be given explicit mode declarations, which can be either obs, upd or out. An

implementation fully parameterized by the backend is called a program module.

Introductory Example2

Let us look at how to specify and implement natural numbers in Magnolia as an example.

We will take advantage of the fact that natural numbers with addition and multiplication

form a commutative semiring.

A commutative semiring is defined as a set S with two binary operations plus and

mult such that:

� (S, plus) is a commutative monoid with identity element 0

� (S,mult) is a commutative monoid with identity element 1

� mult distributes over plus

� mult by 0 annihilates S

First, we will define a generic commutative semiring and then we will relate it to a

specific natural number implementation. This also serves as an example to show how

separating generic structures from specific implementation can decrease code duplication

by reusing generic code.

We will begin by specifying a basic algebraic structure, the semigroup. A semigroup is

a type together with an associative binary operation. This is straight forward to formulate

in Magnolia.

1 concept Semigroup = {
2
3 type S;
4
5 function bop(s1: S, s2: S): S;
6
7 axiom associative(s1: S, s2: S, s3: S) {
8 assert bop(bop(s1 , s2), s3) == bop(s1 , bop(s2 , s3));
9 }
10 }

Listing 3.1: Concept of a semigroup

2The complete example is available online under examples/naturalnumbers [30]
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We can then expand on our semigroup concept by adding an identity element, this

gives us a monoid. For a semiring to be commutative we require that its underlying

monoids are commutative. By adding the commutative property to our monoid concept,

we get a commutative (or abelian) monoid. Magnolia’s powerful renaming mechanism

is also in use here. Renamings allow us to give new names to any declared type or

function in a module, providing great flexibility for both specializing generic structures

and avoiding unintended name overlaps when importing multiple modules.

1 concept AbelianMonoid = {
2
3 // include Semigroup , rename type S to M
4 use Semigroup[S => M];
5
6 function identity (): M;
7
8 axiom idAxiom(m: M) {
9 assert bop(identity (), m) == m;
10 assert bop(m, identity ()) == m;
11 }
12 axiom commutative(m1: M, m2: M) {
13 assert bop(m1 , m2) == bop(m2 , m1);
14 }
15 }

Listing 3.2: Concept of an abelian monoid

We can now specify our semiring by bringing in our monoid concept in scope with the

appropriate renamings, and by asserting the distribution- and annihilation properties.

1 concept Semiring = {
2 // Gives us + and 0
3 use AbelianMonoid[bop => _+_, identity => zero];
4 // Gives us * and 1
5 use AbelianMonoid[bop => _*_, identity => one];
6
7 // Multiplication distributes over addition
8 axiom multDistribution(m1: M, m2: M, m3: M) {
9 assert m1 * (m2 + m3) == (m1 * m2) + (m1 * m3);
10 assert (m1 + m2) * m3 == (m1 * m3) + (m2 * m3);
11 }
12
13 // Annihilation of mult by zero
14 axiom multAnnihilation(m: M) {
15 assert m * zero() == zero();
16 assert zero() * m == zero();
17 }
18 }

Listing 3.3: Concept of a semiring

This concludes our specification of a generic commutative semiring, and we proceed

to a concrete implementation. We must rely on externally provided types for our imple-

mentation because Magnolia does not provide any concrete types. In this example, we’ll

use a C++ backend.
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1 // externally defined types and functions
2 implementation ExternalNat = external C++ base.nat {
3 type Nat;
4
5 function zero(): Nat;
6 function one(): Nat;
7
8 function add(a: Nat , b: Nat): Nat;
9 function mul(a: Nat , b: Nat): Nat;
10 }
11
12 program NaturalNumbers = {
13 use ExternalNat;
14 }

Listing 3.4: External implementation and program in Magnolia

Now we want to relate our generic specification to our concrete implementation. The

satisfaction construct allows us to do precisely this.

1 satisfaction NaturalNumbersModelsSemiring = NaturalNumbers
2 models Semiring[M => Nat ,
3 zero => zero ,
4 one => one ,
5 _+_ => add ,
6 _*_ => mul];

Listing 3.5: Asserting a claim that a program models a concept

This satisfaction relation NaturalNumbersModelsSemiring expresses that the pro-

gram NaturalNumbers satisfies the axioms of Semiring with the provided type Nat and

functions zero, one, add and mul.

If we provide a minimal backend in C++, together with a main function with some

test calls, we can compile with magnoliac and check that our small specification and

implementation in fact yields executable code.

1 $ ./ natnum.bin
2 zero(): 0
3 add(one(), one()) = 2

Listing 3.6: Example output of the Natural Numbers program

3.2 Related works on Magnolia

There has been a wide range of work done in the Magnolia ecosystem since its inception.

� Bagge lays the groundwork for the concepts explored in Magnolia, as well as

providing the first compiler implementation.

19



� Haugsbakk uses Magnolia as a vehicle to explore program transformation tech-

niques.

� Abusdal explores the MoA calculus in the context of Magnolia similarily to this

thesis, but through the lens of array transformations.

� Chetioui et al. highlights a redesigned Magnolia compiler [5], extending it to sup-

port a Python backend, and implementing a subset of the Boost Graph Library [42]

in Magnolia to demonstrate how this allows for performant code in both transpiled

C++ and Python from the same Magnolia source.

� Hamre provides insights on the viability and use of third-party verification software

such as SMT solvers to prove or disprove satisfaction claims in Magnolia code.
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Chapter 4

Arrays in other programming

languages & PyWake

4.1 Arrays in programming languages

Arrays in programming are used to conveniently allocate equal parts of contiguous mem-

ory without having to refer to individual variables for each allocation. In this section we

will take a short detour to look at multiarray support in some convensional programming

languages.

4.1.1 C

C does not have support for multiarrays, only allowing integer indexing. While one can

both create and index C arrays with multiple integer indices – e.g. a ”2-dimensional”

array int array[4][4] – this is just syntactic sugar for making 1-dimensional array

manipulation easier. Array creation in C is in itself in fact syntactic sugar for creating

a pointer to a location in memory. C arrays are in reality pointers to the first block of

memory, and accessing elements after that is just providing an offset to the initial pointer

position. This is reflected in C11 standard [24], where it describes array memory layout

as contiguous. Two arrays of different dimensionality with the same elements in identical

order will be represented equally in memory. C also allows for nesting of arrays, i.e.

arrays of arrays.
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Abusdal showcased how efficient the C compiler can be, in an example similar to

this.

1 const int one_d [4] = {1,2,3,4};
2 const int two_d [2][3] = {{1 ,2} ,{3 ,4}};
3
4 int c_indexing () {
5 if(one_d [0] == two_d [0][0] &&
6 one_d [1] == two_d [0][1] &&
7 one_d [2] == two_d [1][0] &&
8 one_d [3] == two_d [1][1])
9 {return 5;}
10 else
11 {return 10;}
12 }

Listing 4.1: C array example

Compiling using GCC with all optimizations on, we can see that the whole comparison

in the c indexing function has been reduced to a single mov instruction.

1 <c_indexing >:
2 mov $0x5 , %eax
3 ret

Listing 4.2: Assembly output of C example

4.1.2 Fortran

Fortran arrays offer much more fine-grained manipulations out of the box. It supports

arithmetic operations on arrays, reducing the need to iterate through arrays as one are

used to in the C school of languages. Interestingly, unlike C, Fortran does not allow for

nested arrays. It is explicitly described in the Fortran 2003 standard [23] that a scalar

is a datum that is not an array (..) an array is a set of scalar data, all of the same type

(..). Fortran also limits the number of dimensions an array can have to seven, but poses

no restrictions on the number of elements each dimension can have.

Drawing once again from Abusdal, the GCC Fortran compiler can – as the C compiler

– optimize out all array accesses given the right conditions.
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1
2 function fortran_indexing () result(r)
3
4 integer :: r
5 integer , dimension (2,2,2) :: array1
6 integer , dimension (8) :: array2
7 array1 = reshape ([1,2,3,4,5,6,7,8], [2,2,2])
8 array2 = reshape ([1,2,3,4,5,6,7,8], [8])
9
10 if(array2 (1) == array1 (1,1,1) .and. &
11 array2 (2) == array1 (2,1,1) .and. &
12 array2 (3) == array1 (1,2,1) .and. &
13 array2 (4) == array1 (2,2,1) .and. &
14 array2 (5) == array1 (1,1,2) .and. &
15 array2 (6) == array1 (2,1,2) .and. &
16 array2 (7) == array1 (1,2,2) .and. &
17 array2 (8) == array1 (2,2,2)) then
18 r = 5
19 else
20 r = 10
21 end if
22 end function access

Listing 4.3: Fortran90 array access example

As with 4.1.1, if we compile using GCC with all optimizations enabled and inspect

the assembly output we can see that all array accesses has been optimized out, and we

are left with a simple mov instruction setting the result to 5.

1 <fortran_indexing_ >:
2 mov $0x5 , %eax
3 ret

Listing 4.4: Assembly output of Fortran example

4.1.3 Python

Python is not known for its arrays, but rather for its lists. While arrays typically require

a type to be provided, the flexibility of lists are more suited for the dynamically typed

paradigm Python follows. Python lists are dynamically sized and allows for mixing of

types in a single container. As with other languages, Pythons built-in lists has – while

useful – largely been replaced with library provided alternatives for performance heavy

computations. While the Python standard library includes an array package [11], it is

scheduled for deprecation in Python 4, most likely due to third-party libraries already

meeting the demand for arrays. Let us take a look at the most prolific one: NumPy.
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NumPy [18] is a Python library for array and numerical computations. It has become

synonymous with array- and numerical computing in the realm of Python, and is part

of the foundation of libraries such as SciPy [46] and pandas [48]. It has even proved

itself worthy of application in fields with demanding computational requirements, e.g.

astrophysics [35].

NumPy offers a powerful API for array manipulation, and manages to achieve higher

performance than usually associated with Python by leveraging optimized C code for

much of its core implementation, and Fortran libraries such as OpenBLAS. Additionally,

there exists extensions to NumPy designed to leverage high performance architectures

such as GPUs [34], backing up the claim that there is a demand for tooling to adapt to

increasing computing power. Many of the operations provided by NumPy corresponds

with operations from MoA and Fortran, both in naming and behavior. This gives an

indication that many array libraries – although different design choices – to a varying

degree inherit some core traits from early array languages such as APL and Fortran.

Here we give a few examples of operations that show up in NumPy as well as MoA

or Fortran.

1 import numpy as np
2 # creating a 1-dimensional array
3 data = np.arange (12)
4 > array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
5
6 # the shape
7 data.shape
8 > (12,)
9
10 # reshape it to an array with shape (3,4)
11 data = data.reshape ((3, 4))
12
13 > array ([[ 0, 1, 2, 3],
14 [ 4, 5, 6, 7],
15 [ 8, 9, 10, 11]])
16 data.shape
17 > (3,4)
18 # indexing
19 data [1,2] # total
20 > 6
21 data [2] # partial
22 > array([ 8, 9, 10, 11])
23 data[-1] # negative (in bounds)
24 > array([ 8, 9, 10, 11])
25
26 # map
27 data + 2
28 > array ([[ 2, 3, 4, 5],
29 [ 6, 7, 8, 9],
30 [10, 11, 12, 13]])

Listing 4.5: NumPy basic operations
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4.2 Example domain: wind farm modelling with Py-

Wake

Simulating wind in wind farms is an application area well suited for high performance

array computations. Here we take a quick look on how the PyWake library combines the

computational strength of NumPy with Pythons ease of use.

Calculating wind flow is far from a new field of research. The Navier-Stokes equations

on the motion of viscous fluids were formulated in the first half of the 19th century. Proofs

of general solutions and their uniqueness are famously one of the open questions presented

as part of the Millennium Prize Problems [4]. Leveraging the power of computers to

calculate wind flow proved useful, Veers exemplifies earlier application areas of this,

using simulation data to analyse the aerodynamics of wind turbines.

Arrays were an obvious representation of data to explore when it came to fluid simula-

tions. The three spatial axes of the real world can be represented by a three-dimensional

array, and the problem could then be reduced to efficiently propagating updated values

between a finite collection of grid points. One also saw the potential for running much of

the computation in parallel, especially since the rise of GPGPU in the mid- 2000s [32, 26]

with platforms such as CUDA [36] and OpenCL [43].

Large-scale wind farm design and maintenance necessitate extensive modeling of wind

and ocean conditions. The wind conditions of the locations suitable for power generation

are self-explanatory: you would want to build your wind farm in a location with average

wind speeds high enough to generate a sufficient amount of electricity. The addition of

wind turbines complicates matters considerably. The rows of turbines disrupt the wind

flow, so positioning the turbines to maximize output in the face of disrupted air flow is

critical.

PyWake [38] is a Python library developed and maintained by the Technical University

of Denmark, used for calculating wind fields and energy production of wind farms. As

an academic effort [27, 47, 44, 41], PyWake is a powerful tool capable of simulating

wind conditions in wind farms on both sea (accounting for waves) and land (accounting

for terrain). PyWake uses XArray [21] for its data representation, which are labeled

multiarrays. XArray is in it self built on top of NumPy arrays. With NumPy arrays
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serving as the underlying data structures, calculating how wind propagates through the

wind farm can be reduced to numerical maps on arrays.

While highly customizable to meet the requirements of domain experts, PyWake

comes with a library of pre-defined models to work with. This includes real-world wind

turbines that are currently in use, as well as a collection of existing wind farms with which

one can experiment. PyWake is also tightly integrated with matplotlib [22], allowing for

easy visualization of aspects such as AEP, wind speeds across a wind farm, and wind

speeds around single turbines.

In this example we will be using the pre-defined site Horns Rev 1, which is an offshore

wind farm in Denmark. We will create a SimulationResult, which is a labeled XArray

containing arrays of information such as wind speeds, wind direction and power produc-

tion across the site. By invoking methods on the SimulationResult, we can easily extract

and visualize information, e.g. AEP.

1 import numpy as np
2 import py_wake
3
4 from py_wake.examples.data.hornsrev1 import Hornsrev1Site ,V80 , wt_x ,

↪→ wt_y , wt16_x , wt16_y
5 from py_wake import NOJ
6
7 # selecting type of turbine
8 windTurbines = V80()
9 # selecting site
10 site = Hornsrev1Site ()
11 # NOJ is a wake model , which combines a site with a set of turbines
12 noj = NOJ(site ,windTurbines)
13
14 # creating a simulation result with 16 turbines
15 sim_res = noj(wt16_x , wt16_y)

Listing 4.6: PyWake example

Here we give an example plot to showcase how one can easily present information of

about the wind farm. Figure 4.2 gives clear information about how the power production

of the inner turbines are being affected by the surrounding ones.
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Figure 4.1: Birds eye view of the wind farm, AEP of each turbine
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Chapter 5

MoA in Magnolia

In this chapter, we present an implementation of a subset of MoA in the Magnolia pro-

gramming language, utilizing the magnoliac [5] compiler currently under active develop-

ment. We leverage a C++ backend to provide us with the basic types and structures

we need. The complete code base for the implementation presented in this chapter is

publically available online [31].

Remark: This implementation is a result of work done in preparation for the paper pre-

sented Chapter 6, and reflects its intended use as a platform to explore the API presented

in Burrows et al. and Chetioui et al.. As such, it is not a complete implementation of

the ψ-calculus, but rather a subset.

Remark 2: Following and release of the previous Magnolia compiler [2], a large standard

library was developed. magnoliac is at the time of writing this thesis incompatible with

the standard library, and as such all modules used in this project have been developed

independently of previous work.

5.1 Specification

Everything in the ψ-calculus revolves around a single type: the array. Vectors are 1-

dimensional arrays, as are shapes and index vectors. Separating the concepts of array,

shape, and index will be useful for our purposes. This is primarily due to the fact that

operations (both unary and binary) are defined on legal ranges of shapes, and using the

type system to constrain the functions we define will make the specification more readable

and less error-prone.
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1 concept ArrayBaseOps {
2 // Array type
3 type Array;
4 // Index type
5 type Index;
6 // Shape type
7 type Shape;
8 // Element type
9 require type Element;
10
11 /*
12 We separate the integer types based on
13 intended use to avoid type mixups
14 */
15 type Axis;
16 type Dim;
17 type Offset;
18 type Size;
19
20 function dim(a: Array): Dim;
21 function shape(a: Array): Shape;
22 function total(a: Array): Size;
23
24 // Predicates assuring that index -parameters are of the correct size
25 predicate isPartialIndex(i: Index , a: Array);
26 predicate isTotalIndex(i: Index , a: Array);
27
28 function psi(i: Index , a: Array): Array guard isPartialIndex(i, a);
29 function psi(i: Index , a: Array): Element guard isTotalIndex(i, a);
30
31 function cat(a1: Array , a2: Array): Array
32 guard drop(0, shape(a1)) == drop(0, shape(a2));
33
34 function take(o: Offset , a: Array): Array;
35 function drop(o: Offset , a: Array): Array;
36
37 // transformations
38 procedure rotate(obs ax: Axis , obs j: Offset , upd a: Array)
39 guard ax < dim(a);
40 procedure reverse(upd a: Array);
41 procedure transpose(upd a: Array);
42 }

Listing 5.1: MoA Signature

Now that the core signature is defined, we can equip it with axioms to assert behavior:

1 // rotate does not change the shape of the array
2 axiom rotateShapeAxiom(ax: Axis , j: Offset , a: Array) {
3 var pre_shape = shape(a);
4 call rotate(ax , j, a);
5 assert shape(a) == pre_shape;
6 }
7
8 // transposing an array reverses its shape
9 axiom transposeShapeAxiom(a: Array) {
10 var pre_shape = shape(a);
11 call transpose(a);
12 assert shape(a) == reverse(pre_shape);
13 }

Listing 5.2: MoA Axioms

The API described in Burrows et al. states that our implementation is going to need

mapped operations on arrays. Let us express this in our specification:
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1 concept MappedOps = {
2
3 use ArrayBaseOps;
4
5 // Requiring functions that will be provided by the backend
6 require function _+_(a: Element , b: Element): Element;
7 require function _-_(a: Element , b: Element): Element;
8 require function _*_(a: Element , b: Element): Element;
9 require function _/_(a: Element , b: Element): Element;
10 require function -_(a: Element): Element;
11
12 require predicate _<_(a: Element , b: Element);
13 require predicate _==_(a: Element , b: Element);
14
15 // Array -Array operations
16 function _+_(a: Array , b: Array): Array;
17 function _-_(a: Array , b: Array): Array;
18 function _*_(a: Array , b: Array): Array;
19 function _/_(a: Array , b: Array): Array;
20 function -_(a: Array): Array;
21
22 predicate _==_(a: Array , b: Array);
23
24 // Scalar -Array operations
25 function _+_(a: Element , b: Array): Array;
26 function _-_(a: Element , b: Array): Array;
27 function _*_(a: Element , b: Array): Array;
28 function _/_(a: Element , b: Array): Array;
29 }

Listing 5.3: Signature for mapped operations

With the MappedOps signature defined, we can add axioms to express the intended

semantics and relate the mapped operations to their underlying element-wise operations.

1 axiom binaryMap(a: Array , b: Array , ix: Index)
2 guard isTotalIndex(ix , a) && isTotalIndex(ix, b) {
3
4 assert psi(a+b, ix) == psi(a, ix) + psi(b, ix);
5 assert psi(a-b, ix) == psi(a, ix) - psi(b, ix);
6 assert psi(a*b, ix) == psi(a, ix) * psi(b, ix);
7 assert psi(a/b, ix) == psi(a, ix) / psi(b, ix);
8 }
9 axiom scalarLeftMap(e: Element , a: Array , ix: Index)
10 guard isTotalIndex(ix , a) {
11 assert psi(e+a, ix) == e + psi(a, ix);
12 assert psi(e-a, ix) == e - psi(a, ix);
13 assert psi(e*a, ix) == e * psi(a, ix);
14 assert psi(e/a, ix) == e / psi(a, ix);
15 }
16 axiom unaryMap(a: Array , ix: Index) {
17 assert psi(-a, ix) == -psi(a, ix);
18 }

Listing 5.4: Axioms for mapped operations

5.2 Implementation

With our specification completed, we can provide an implementation. This is accom-

plished by combining externally defined functions with our API and providing our own
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function and procedure bodies. What we rely on from the backend are:

� A looping mechanism

� An array structure with getters/setters

� Base types

Magnolia does not have built-in support for control structures such as loops, and by

design does not allow recursion. While cumbersome, we can implement our own looping

structures by leveraging loops present in the backend language at hand. Listing 5.5 is

an example of a while-loop with one updatable state, and an observable context. The

repeat procedure calls the body procedure as long as the cond predicate holds true given

the context and current state. A simple use case would be printing the elements of a

list, providing the list as context, an integer type as state, and cond as a upper bound

predicate. A drawback to this approach is that Magnolia lacks support for variadics,

which forces us to provide different implementations based on the number of contexts

and states one would want present in the loop.

1 implementation WhileLoop1_1 =
2 external C++ while_loop1_1 {
3 require type Context1;
4 require type State1;
5
6 require predicate cond(context1: Context1 , state1: State1);
7 require procedure body(obs context1: Context1 ,
8 upd state1: State1);
9 procedure repeat(obs context1: Context1 ,
10 upd state1: State1);
11 };

Listing 5.5: External While-loop in Magnolia with 1 obs variable and 1 upd variable.

We define our base types and array data structure in C++, contained in structs.

1 template <typename _Element >
2 struct moa {
3 // defining types
4 typedef _Element Element;
5 typedef int Int32;
6 typedef float Float32;
7 typedef std::vector <Int > Index;
8 typedef std::vector <Index > IndexSpace;
9 typedef std::vector <Int > Shape;
10
11 // defining the Array
12 struct Array {
13
14 Element * _content;
15 Shape _shape;
16
17 // total index , returns element
18 inline Element psi(const Index i);
19 // partial index , returns subarray
20 inline Array psi(const Index i);
21 };
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22 // indexing guards
23 inline bool isTotalIndex(const Index i, const Array a)
24 return size(i) == size(a);
25 inline bool isPartialIndex(const Index i, const Array a)
26 return size(i) < size(a);
27 };

Listing 5.6: Snippet of array externals in C++

These can then be put together with their corresponding Magnolia-side definitions

using the external keyword.

1 implementation ExternalMoaOps = external C++ moa {
2 require type Element;
3 type Array;
4 type Index;
5 type IndexSpace;
6 type Shape;
7 type Int32;
8 type Float32;
9 }

Listing 5.7: Array externals in Magnolia

It is worth noting that the required type Element is not defined in our moa struct,

but is instead passed as a generic template argument. This allows us to pass different

Element types to our arrays, giving us more flexibility. We provide backend definitions

for an Int64 and a Float64 element type, as well as operations on the types, in this

implementation.

1 struct float64_utils
2 {
3 typedef double Float64;
4
5 inline Float64 zero() { return 0.0; }
6 inline Float64 one() { return 1.0; }
7
8 inline Float64 binary_add(const Float64 a, const Float64 b)
9 return a + b;
10 inline Float64 binary_sub(const Float64 a, const Float64 b)
11 return a - b;
12 inline Float64 mul(const Float64 a, const Float64 b)
13 return a * b;
14 inline Float64 div(const Float64 a, const Float64 b)
15 return a / b;
16 inline Float64 unary_sub(const Float64 a)
17 return -a;
18 inline Float64 abs(const Float64 a)
19 return std::abs(a);
20 };

Listing 5.8: Backend definition of a Float64 type with arithmetic operations

We also specify a generic NumberType-concept in Magnolia, which in combination

with our backend-definition yields our candidates for types we can rename Element to:
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1 concept NumberOps = {
2 type NumberType;
3
4 function zero(): NumberType;
5 function one(): NumberType;
6
7 function binary_add(a: NumberType , b: NumberType): NumberType;
8 function binary_sub(a: NumberType , b: NumberType): NumberType;
9 function mul(a: NumberType , b: NumberType): NumberType;
10 function div(a: NumberType , b: NumberType): NumberType;
11 function unary_sub(a: NumberType): NumberType;
12 function abs(a: NumberType): NumberType;
13 }
14 implementation Float64Utils = external C++ float64_utils
15 NumberOps[NumberType => Float64 ];

Listing 5.9: Magnolia definition of a Float64 type with arithmetic operations

Now we have all the building blocks we need to provide an implementation for our

ArrayBaseOps concept. We make an effort to reflect the MoA notation introduced in

Chetioui et al. For the complete list of definitions used to implement these functions we

refer the reader to Chetioui et al., but as an informative example we will compare the

definition of catenation to our implementation. The definition given in Chetioui et al.

reads:

Given an arrays A and B with ρ(A) = ⟨sA0 , s1, . . . , sn−1⟩ and ρ(B) = ⟨sB0 , s1, . . . , sn−1⟩ –
i.e. two arrays with identical shape except for the first shape element – we can describe

the result at index ⟨i⟩ as

⟨i⟩ ψ cat(A,B) =




⟨i⟩ ψ A if i < s0

⟨i− s0⟩ ψ B otherwise

Notice how ⟨i⟩ is a index vector of length 1. For any array C with δ(C) > 1 this is

a partial index, and as such we are updating subarrays rather than individual elements,

i.e. a map.

We provide a body to a loop with 3 observable contexts and 2 updatable states, and

instantiate the loop with a valid index space, a result array with correct dimensions, and

an counter variable c.

For each valid index, the procedure cat ix is executed once.
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1 procedure cat_ix(obs a: Array ,
2 obs b: Array ,
3 obs ix: Index ,
4 upd res: Array) {
5
6 var s0 = get(shape(a), zero());
7 var i0 = get(ix , zero());
8
9 if i0 < s0 then {
10 call set(res , ix , psi(ix , a));
11 } else {
12 var new_ix = create_1d_index(i0 - s0);
13 call set(res , ix , psi(new_ix , b));
14 };
15 }

Listing 5.10: Implementation of cat in Magnolia

All the operations follow this pattern of utilizing an external loop to describe the

result at element level or subarray level, depending on whether we have a total or partial

index. We continue by providing bodies to our take and drop prototypes, again calling

each procedure once for every valid index.

1 procedure take_ix(obs a: Array ,
2 obs ix: Index ,
3 obs t: Offset ,
4 upd res: Array) {
5 if zero() <= t then {
6 call set(res , ix , psi(a, ix));
7 } else {
8 var s0 = get(shape(a), zero());
9 var i0 = get(ix , zero());
10 var new_ix = create_1d_index(s0 - abs(t) + i0);
11 call set(res , ix , psi(new_ix , a));
12 };
13 }
14 procedure drop_ix(obs a: Array ,
15 obs ix: Index ,
16 obs t: Int ,
17 upd res: Array) {
18 if zero() <= t then {
19 var i0 = get(ix , zero());
20 var new_ix = create_1d_index(i0 + t);
21 call set(res , ix , psi(a, new_ix));
22 } else {
23 call set(res , ix , psi(ix , a));
24 };
25 }

Listing 5.11: Implementation of take and drop in Magnolia

With cat, take and drop defined we can implement our transformations, which are

defined in terms of these operations [7].

1 // reverse
2 procedure reverse_ix(obs a: Array ,
3 obs ix: Index ,
4 upd res: Array) {
5 var sh_0 = get(a, zero());
6 var ix_0 = get(ix , zero());
7
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8 var new_ix_0 = sh_0 - (ix_0 + one());
9 var new_ix = cat_index(create_1d_index(new_ix_0),
10 drop_index_elem(ix, zero()));
11
12 call set(res , new_ix , psi(ix , a));
13 }
14 // rotate
15 procedure rotate_ix(obs a: Array ,
16 obs ix: Index ,
17 obs sigma: Offset ,
18 upd res: Array) {
19 if zero() <= sigma then {
20 var e1 = take(-sigma , psi(ix , a));
21 var e2 = drop(-sigma , psi(ix , a));
22 call set(res , ix, cat(e1 ,e2));
23 } else {
24 var e1 = drop(sigma , psi(ix , a));
25 var e2 = take(sigma , psi(ix , a));
26 call set(res , ix, cat(e1 ,e2));
27 };
28 }
29 // transpose
30 procedure transpose_ix(obs a: Array ,
31 obs ix: Index ,
32 upd res: Array) {
33 var e = psi(reverse(ix), a);
34 call set(res , ix , e);
35 }

Listing 5.12: Implementation of MoA transformations in Magnolia

With transformations complete, we have successfully implemented the API specified

by Burrows et al. and Chetioui et al. In order to get executable code, all that remains

is to combine our external element type with our MoA implementation in a program

module.

1 program Float64Arrays = {
2 use Float64Utils;
3 use MoA[Element => Float64 ];
4 }

Listing 5.13: Array program parameterized with a Float64 element type.

5.3 Summary

In this chapter we have provided a specification and implementation of a subset of MoA

in Magnolia. We have made a case for how separating the generic API from its imple-

mentations can provide more flexibility. With the core API defined, the programmer is

free to provide any number of different implementations based on domain specific needs,

with guarantees of type safety by the compiler.
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Utilizing an external loop to serve as the core of our implementation made it possible

to describe the result of a computation at each index, closely following the notational

style of recent BLDL efforts [6, 7].

While operational, the implementation presented in this chapter has not lived up to

its full potential. Crucially, in order to serve as the backbone for the approach presented

in section 6.1, a working implementation of circular padding [7] was needed. While ef-

fort was put into development, time constraints prevented it from reaching a satisfactory

level suitable for use in the computational experiments planned for the publication. This

raises an important point. While the Magnolia compiler can provide some type safety

guarantees, externally provided code is no less prone to programming errors. The in-

stability in the case of circular padding could be traced back to the C++ backend, and

would require a non-trivial rewrite of the indexing code. As such, a separate, more stable

implementation ended up being utilized in the article.

With this experience in mind, this brings us back to a remark from the beginning of

the chapter. The implementation presented in this chapter was made without the support

of the standard library due to incompatibility issues. Modularity in programming allows

for greater flexibility, and it stands to reason that a trusted library of modules provides

greater assurance that the types and data structures being imported function as intended.

5.4 Related works on MoA implementations

Previous partial or full implementations of MoA exist.

� In 1994, Mullin and Thibault implemented the Psi Compiler [33], demonstrating a

working C implementation of ψ-reduction.

� Python MoA [37] is a proof of concept of a Python implementation of MoA funded

by Quansight Labs.

� There are currently efforts to implement a MoA library for LFortran [39], headed

by Mullin and a group of people connected to the Fortran community.
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Chapter 6

Array Optimizations

6.1 P3 Problem and Magnolia language: Specializing

Array Computations for Emerging Architectures

This section consists of a unpublished paper showcasing array transformations using

Magnolia axioms to perform rewrites.

The article is at the time of submitting this thesis undergoing peer review. A key

aspect we expect to get constructive feedback on is the number of different architectures

explored. The CUDA implementation discussed in section 6.2 is a work in progress to

address this.

The author of this thesis contributed to the underlying Magnolia implementation of

MoA, a CUDA implementation discussed in section 6.2, as well as contributing to parts

of the article text.
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ABSTRACT2

The problem of producing portable high-performance computing (HPC) software that is cheap3
to develop and maintain is called the P3 (performance, portability, productivity) problem. Good4
solutions to the P3 problem have been achieved when the performance profiles of the target5
machines have been similar. The variety of HPC architectures is, however, large and can be6
expected to grow larger. Software for HPC therefore needs to be highly adaptable, and there is a7
pressing need to provide developers with tools to produce software that can target machines with8
vastly different profiles.9

Multi-dimensional array manipulation constitutes a core component of numerous numerical10
methods, such as finite difference solvers of Partial Differential Equations (PDEs). The efficiency11
of these computations is tightly connected to traversing and distributing array data in a hardware-12
friendly way. The Mathematics of Arrays (MoA) allows for formally reasoning about array13
computations and enables systematic transformations of array-based programs, e.g. to use14
data layouts that fit to a specific architecture.15

This paper shows a general methodology for solving the P3 problem in a well-specified16
domain using Magnolia, a language designed to embody generic programming. The Magnolia17
programmer can restrict the semantic properties of abstract generic types and operations by18
defining so-called axioms. Axioms can be used to produce tests for concrete implementations of19
specifications, for formal verification, or to perform semantics-preserving program transformations.20

We leverage Magnolia’s semantic specification facilities to extend the Magnolia compiler with a21
term rewriting system. We implement MoA’s transformation rules in Magnolia, and demonstrate22
through a case study on a finite difference solver of PDEs how our rewriting system allows23
exploring the space of possible optimizations.24

Keywords: Partial Differential Equations, Generic Programming, Magnolia Language, Mathematics of Arrays, Term Rewriting, High-25
Performance Computing26
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1 INTRODUCTION

The quest for higher performance fuels innovation on hardware architectures; we have seen a wide variety27
of high-performance computing (HPC) architectures in the past and can expect new ones to keep appearing.28
Long-lived and successful HPC software must thus be highly adaptable, adjustable to different memory29
hierarchies and changing intra- and interprocess communication hardware.30

The problem of producing portable HPC software that is easy, or at least not unreasonably difficult, to31
develop and maintain is called the P3 (performance, portability, productivity) problem. Good solutions32
to the P3 problem have been achieved when the performance profiles of the target machines have been33
similar (Wolfe, 2021). As more new hardware architectures emerge, there is a pressing need to provide34
developers with tools to produce such software for targets with vastly different profiles. This includes35
architectures within Wolfe’s P3 machine performance model (CPUs, GPUs, or other accelerators, possibly36
distributed) (Wolfe, 2021) but also those that do not (e.g., Groq’s Tensor Streaming Processor (Abts et al.,37
2020)).38

Multidimensional array manipulation is at the core of numerous numerical methods. The topic of39
optimizing the performance of array computations is therefore extremely relevant to the P3 problem.40
We have previously explored the Mathematics of Arrays (MoA) formalism (Mullin, 1988) as a tool to41
optimize array computations for different hardware architectures (Chetioui et al., 2019, 2021). A thorough42
mathematical understanding of a given domain is key to enabling domain-specific semantic-preserving43
rewrites — and therefore optimizations.44

The portability and productivity pillars of P3 are both strongly related to the notion of code reuse.45
Portability as meant here is the ability to run the same code with high performance on different46
machines. Productivity means that applications can be developed and maintained with a reasonable47
and predicable effort. Research unequivocally shows that productivity increases through reuse (Nazareth48
and Rothenberger, 2004; Basili et al., 1996; Frakes and Succi, 2001). Generic programming has proven to be49
an effective method of constructing libraries of reusable software components. The Magnolia programming50
language (Bagge, 2009) is designed as an embodiment of generic programming (Chetioui et al., 2022). It51
allows the flexible intermixing of specifications and implementations. Specifications can additionally be52
restricted by semantic requirements (called axioms) in the form of assertions. These axioms can be used53
for testing (Bagge et al., 2011), but also for optimization when used as directed rewrite rules, in the case of54
equational or conditional equational axioms (Bagge and Haveraaen, 2009).55

1.1 Schedules as Hardware Abstractions56

In their 2012 paper on Halide, Ragan-Kelley et al. introduce the term schedule to refer to decisions about57
storage and about the order of computations in a program (Ragan-Kelley et al., 2012). The insight is that58
the essence of an algorithm is distinct from its schedule — allowing the advent of a programming model59
where both kinds of computations are not anymore intertwined but instead expressed independently from60
each other.61

Stepanov-style generic programming abstracts algorithms and data structures by specifying minimum62
syntactic and semantic requirements on instantiations. Said differently, the types and operations underlying63
a generic implementation are only characterized by the part of their observable behavior that is relevant to64
the generic algorithm.65

When observed through the lens of generic programming, a schedule is an abstraction for the kind of66
hardware architecture underlying the computations. We consider only the information about the hardware67
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that is relevant for executing our algorithm efficiently: how computations should be ordered, and how data68
should be stored. Similar hardware architectures are then valid instantiations for the same schedule.69

Scheduling, in the case of array computations, relates particularly to the access patterns of the arrays.70
As a motivating example, consider an array program running on a single CPU with memory, the classical71
model of a computer. We may have three standard traversal patterns for computations over our arrays:72

1. a row-major traversal;73

2. a column-major traversal;74

3. a tiled traversal.75

While the original algorithm can be expressed without making any assumption about the underlying76
hardware, the choice of a particular hardware will dictate which traversal pattern is most efficient. In77
other cases, the choice of a particular schedule may be desirable. E.g., on hardware consisting of several78
distributed CPUs connected through some communication network, we may want the schedule to handle79
inter-CPU communication using MPI. If each one of these CPUs is connected to several GPUs, we may80
also want the schedule to load data on and off the GPUs as needed. Such choices will affect the desired81
data layout, and consequently the data access patterns so as to match the distribution of the data. These82
changes will have to be reflected in the presentation of the algorithm.83

The execution time for an algorithm adapted to its schedule may be dramatically shorter than for an84
algorithm exhibiting inadapted data access patterns. While an algorithm and its schedule can be expressed85
independently, choices in the latter may affect what is an appropriate expression of the former, and vice86
versa. Our approach uses rewriting technology to adapt a unique algorithm to adequately exploit the data87
traversal pattern of a schedule, and underlying hardware characteristics.88

Throughout the rest of the paper, we view schedules as hardware abstractions. This view is fully89
compatible with Ragan-Kelley et al.’s definition of schedules, but conveys our intent more accurately.90

1.2 Contribution and Structure of the Paper91

The contribution of this paper is a general methodology for solving the P3 problem in a well-specified92
domain, that keeps the essence of the algorithm separate from its schedule. We perform a case study on93
a Partial Differential Equation (PDE) solver based on Finite Difference Methods (FDM). We extend the94
Magnolia compiler with code generation and term rewriting facilities based on axioms. We implement95
our solver in Magnolia, using MoA as an underlying basis for the code, giving us both generic and96
hardware-specific formally verified optimization rules — also directly implemented in Magnolia.97

The paper is structured as follows. Section 2 provides necessary background on MoA and Magnolia.98
Section 3 describes our methodology in detail, and illustrates it with a PDE solver based on FDM. Section 499
reflects on our work and ties it together with relevant related work.100

2 BACKGROUND

2.1 Magnolia101

The phrase generic programming has over decades of programming language development come to102
have a variety of intepretations, depending on the main type of genericity considered. Gibbons gives a103
taxonomy of interpretations (Gibbons, 2006). Stepanov-style generic programming (Dehnert and Stepanov,104
1998) corresponds to what Gibbons calls genericity by property, where one describes data structures and105
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algorithms in terms of syntactic and semantic requirements. This is the essence of Stepanov’s and Musser’s106
concepts (Musser and Stepanov, 1988). They are the direct inspiration behind C++0x concepts (Gregor et al.,107
2006); the C++20 concepts are a scaled back realization of those that only allow syntactic requirements on108
instantiations. (In this latter case, we talk of genericity by structure.)109

Magnolia is a programming language designed as an embodiment of Stepanov-style generic110
programming (Bagge, 2009). Magnolia code is structured into modules that mix abstract specifications of111
operations and their concrete implementations flexibly, following the work of Goguen and Burstall on the112
theory of institutions (Goguen and Burstall, 1984). The language does not offer any primitive types aside113
from predicates: every data structure is implemented in a configurable host programming language. As114
of today, Magnolia can target C++ and Python (Chetioui, 2021). Our prior work coins the term genericity115
by host language to refer to this axis of parameterization, in the style of Gibbons’ taxonomy (Chetioui116
et al., 2022). Composite operations can be implemented in Magnolia, while the base types and operations,117
including loop structures, are implemented in the host language. The programmer can freely decide where118
to set the boundary between the operations implemented in Magnolia, and those implemented in the base119
library written in the host language — depending on what is more convenient. An appropriate choice120
of underlying data structures results in code that is as performant as if implemented directly in the host121
language (Chetioui et al., 2022). Because the axiom formalism is semantically compatible with the program122
code, Magnolia avoids the semantic gap common in approaches to formal software verification (Sannella123
and Tarlecki, 1996).124

A Magnolia signature declares types and operations. A signature can be augmented with axioms that125
restrict the properties of its types and operations: the resulting module is a concept. An implementation126
allows the same declarations as a signature, but also (generic) implementations for the declared operations.127
The last kind of module in Magnolia is a program, a specific kind of implementation in which all the128
specified operations and types are matched with implementations. Crucially, types and operations in129
a program are no longer generic but instead fully concrete. An implementation can be a model of a130
concept; a concept can also be a model of another concept. Such modeling relations can be specified131
directly in Magnolia using the satisfaction language construct.132

Magnolia operations can be functions, procedures, and predicates. The arguments to functions and133
predicates are immutable, while arguments to procedures are given explicit modes: obs (read-only), upd134
(read/write), and out (write-only, and the procedure promises to initialize the argument). Procedures do not135
return a value. Calls to procedures are prefixed with the call keyword.136

Listing 1 gives a general overview of the different kinds of Magnolia modules. We first specify137
the signature of a magma (a set T with a closed binary operation bop). By asserting the138
associativity property on a magma, we get a semigroup. The ConcretePartialSemigroup139
implementation describes an external C++ API providing a guarded multiplication operator over integer140
matrices, where the guard is intended to ensure the argument matrices have compatible dimensions.141
ExampleProgram builds multiplyThreeMatrices off of the primitive building blocks provided142
by ConcretePartialSemigroup. The ExampleProgramHasMulPartialSemigroup satisfaction143
relation indicates that ExampleProgram satisfies the semigroup axioms, with the set of integer matrices144
and guarded multiplication on it. The guard provided on the multiplication operation in the left-hand145
side of the satisfaction is propagated to the right-hand side. The resulting satisfaction relation asserts the146
ExampleProgram has a partial semigroup structure. A block of renamings ([ T => IntMatrix,147
bop => _*_ ]) is applied to Semigroup. Magnolia’s renamings allow changing the names of types148
and operations in places where a module is “opened”. This is a powerful feature which allows normalizing149
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the names exposed by modules when we open them in a given scope, independently of how their types and150
operations were initially named.151

Listing 1. Multiplying three matrices in Magnolia.
s i g n a t u r e Magma = {152

type T;153
f u n c t i o n bop(a: T, b: T): T;154

}155
156

concept Semigroup = {157
use Magma;158
axiom associativity(a: T, b: T, c: T) {159

a s s e r t bop(bop(a, b), c) == bop(a, bop(b, c));160
}161

}162
163

implementat ion ConcretePartialSemigroup =164
e x t e r n a l C++ lib.int_matrices {165

type Nat;166
type IntMatrix;167

168
p r e d i c a t e lhsNrowsIsRhsNcols(m1: IntMatrix, m2: IntMatrix);169

170
f u n c t i o n _*_(m1: IntMatrix, m2: IntMatrix): IntMatrix171

guard lhsNrowsIsRhsNcols(m1, m2);172
}173

174
program ExampleProgram = {175

use ConcretePartialSemigroup;176
177

f u n c t i o n multiplyThreeMatrices(178
A: IntMatrix, B: IntMatrix, C: IntMatrix): IntMatrix = A * B * C;179

}180
181

s a t i s f a c t i o n ExampleProgramHasMulPartialSemigroup = ExampleProgram182
models Semigroup[ T => IntMatrix, bop => _*_ ];183

2.1.1 Exploiting Magnolia axioms184

Concept axioms have previously found use as test oracles (Bagge et al., 2011) and as generic optimization185
rules (Tang and Järvi, 2015; Bagge and Haveraaen, 2009). We implement two module transformations186
called rewrite and generate in the Magnolia compiler under active development (Chetioui, 2021).187

The rewrite transformation extracts all assertions of equations from a given concept, and uses them as188
directed rewrite rules within a target module expression. The maximum allowed number of applications of189
these directed rewrite rules is provided as an argument to the transformation.190
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The generate transformation highlights a third possible use case for Magnolia axioms, i.e. code generation.191
The transformation extracts all the assertions of equations from a given concept where the left-hand side192
is a call to a declared function (or predicate) with two-by-two distinct universally quantified arguments,193
and generates an implementation for the function where the body is the right-hand side of the assertion.194
Intuitively, an assertion with the properties we outlined describes the behavior of the function on the195
left-hand side at every point. Therefore, such assertions are not only a way to specify the intended behavior196
of a function, but also a way to derive an actual implementation for it in case one was not already provided.197
Figure 1 describes the grammar for the rewrite and generate transformations.198

Figure 1. The grammar for the rewrite and generate module transformations in Magnolia.

〈transformation〉 ::=‘rewrite’ 〈module-expr〉 ‘with’ 〈module-expr〉 〈int〉
| ‘generate’ 〈module-expr〉 ‘in’ 〈module-expr〉

Consider the multiplyThreeMatrices function in Listing 1. The function is intended to multiply199
three matrices together — and its body A * B * C desugars to the expression _*_(_*_(A, B), C).200
Due to the associativity property, the order in which the multiplications are executed does not matter when201
it comes to the correctness of the result. However, it matters a lot when it comes to performance: suppose A202
is of dimensions 100×2, B of dimensions 2×20, and C of dimensions 20×90. Executing A * B requires203
100 × 2 × 20 scalar multiplications, and executing (A * B)* C thus requires 100 × 2 × 20 + 100 ×204
20× 90 = 184000 scalar multiplications. On the other side, executing B * C requires 2× 20× 90 scalar205
multiplications, and executing A * (B * C) requires executing 2× 20× 90 + 100× 2× 90 = 21600206
scalar multiplications, nearly ten times fewer.207

Suppose that a developer wants to use the multiplyThreeMatrices function in their program.208
They care about efficiency, and know that the input matrices A, B, and C have the same dimensions as209
specified above. They can use the assertion provided in the associativity property of the Semigroup210
concept as a rewrite rule in multiplyThreeMatrices to optimize the expression from (A * B)* C211
to A * (B * C). Listing 2 shows how.212

Listing 2. Demonstration of the Magnolia rewrite transformation.
program DevProgram = r e w r i t e ExampleProgram213

with Semigroup[ bop => _*_, T => IntMatrix ] 1;214

The Magnolia rewrite module transformation takes three arguments: the module on which to perform215
the rewrite (ExampleProgram in the example), the module from which to extract rewriting rules216
(Semigroup with some renamings applied in the example), and a maximum allowed number of rule217
applications (1 in the example).218

Here, multiplyThreeMatrices is a toy example, and defined directly in the program being219
transpiled — it would therefore be very easy to reimplement it manually. However, this is not always the220
case: the function one wants to transform could be very complicated, and hidden deep inside an external221
dependency. Without the ability to perform rewritings on functions that have been previously defined, the222
developer would have to write their own version of this function.223
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3 METHODOLOGY AND CASE STUDY

We describe here our proposed methodology for writing performant and portable code productively using224
the Magnolia programming language. Each step is first described from a high-level perspective, and then225
concretely demonstrated for our PDE solver example.226

3.1 Identifying and Formalizing the Domain227

The first step of our methodology is to build a thorough understanding of the targeted problem. We do228
that by identifying and formalizing the domain underlying the problem. Formalizing the domain gives us a229
mathematical understanding of the properties expected of the types and operations involved in the problem.230
These in turn allow specifying semantics-preserving optimization rules on them, whose correctness can be231
proven.232

PDE solvers using FDM are based on multi-dimensional array computations. In 2018, Burrows et al.233
identified an array API for FDM solvers. In 2019, Chetioui et al. followed up with a formalization of the234
identified array API using MoA. We will first give an overview of PDE solvers as described by Burrows235
et al., and an introduction to the corresponding MoA theory. With this background in place, we will236
reimplement the PDE solver based on FDM from the work of Chetioui et al., and implement hardware-237
agnostic and hardware-dependent rewriting rules. We show how they can be applied to our Magnolia238
program, and measure the resulting performance improvements.239

3.1.1 PDEs240

PDE solvers have many application areas. One example is numerical simulations of wind flow — e.g. for241
optimizing windmill positioning in large-scale wind farms.242

Computing solutions to PDEs numerically requires discretizing continuous equations to a discrete domain.243
This approach to PDE solvers is often illustrated in the literature with Burgers’ equation (Burgers, 1948).244
Equation 1 presents the equation in its coordinate-free form.245

∂~u

∂t
+ ~u · ∇~u = ν∇2~u, (1)

where ~u is velocity, t time, and ν the viscosity coefficient.246

Assuming a 3D space, we can use a Cartesian coordinate system to rewrite Equation 1 as the following247
system of equations248

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= ν

∂2u

∂x2
+ ν

∂2u

∂y2
+ ν

∂2u

∂z2
(2)

249
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= ν

∂2v

∂x2
+ ν

∂2v

∂y2
+ ν

∂2v

∂z2
(3)

250
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= ν

∂2w

∂x2
+ ν

∂2w

∂y2
+ ν

∂2w

∂z2
, (4)

where ~u = (u, v, w).251
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To discretize the domain, we describe aNx×Ny×Nz grid of velocity values bounded by Lx (respectively252
Ly and Lz) on axis x (respectively y and z) such that the u component of the velocity at index (i, j, k) and253
timestep n is given by254

uni,j,k = u(i∆x, j∆y, k∆z, n∆t), (5)

with ∆x = Lx
Nx

, ∆y =
Ly

Ny
, and ∆z = Lz

Nz
.255

Similarly, the partial derivative of u in the x direction at index (i, j, k) and timestep n+ 1 is256

∂u

∂x
(i∆x, j∆y, k∆z, (n+ 1)∆t). (6)

In the FDM, we compute a partial derivative as a weighted sum of neighbouring grid points — where257
the weights are given by a list of factors called a stencil. The stencil is chosen by a numerical expert. This258
paper, following the work of Burrows et al. uses the numerical stencils (−1

2 , 0,
1
2) and (1,−2, 1) for the259

first and second order partial derivatives respectively.260

Given these stencils, the partial derivative of u in the x direction at index (i, j, k) and timestep n+ 1 is261
approximated by262

∂u

∂x
(i∆x, j∆y, k∆z, (n+ 1)∆t) ≈ ∆t

2∆x
(uni+1,j,k − uni−1,j,k), (7)

which is accurate to O((∆x)2,∆t). Computing the partial derivative along the y (respectively z) axis263
follows a similar pattern, where j (respectively k) varies instead of i.264

The standard 3D explicit finite difference approximation of Equation 2 is then given by265

un+1
i,j,k = uni,j,k −

∆t

2∆x
uni,j,k(uni+1,j,k − uni−1,j,k) +

ν∆t

(∆x)2
(uni+1,j,k + uni−1,j,k − 2uni,j,k)

− ∆t

2∆y
vni,j,k(uni,j+1,k − uni,j−1,k) +

ν∆t

(∆y)2
(uni,j+1,k + uni,j−1,k − 2uni,j,k)

− ∆t

2∆z
wn
i,j,k(uni,j,k+1 − uni,j,k−1) +

ν∆t

(∆z)2
(uni,j,k+1 + uni,j,k−1 − 2uni,j,k).

The discretization of Equations 3 and 4 follows the same pattern.266

The API of Burrows et al. is sufficient to compute numerical solutions to PDEs using FDM. It consists267
of elementwise arithmetic operations at the array level (+, -, *), a rotation operation on arrays (called268
“shift”), and arithmetic operations at the scalar level — corresponding to the behavior of the elementwise269
operations at each index of the array.270

3.1.2 MoA271

MoA (Mullin, 1988; Mullin and Jenkins, 1996) is an algebra for describing operations on arrays. MoA272
distinguishes between two abstraction levels: the Denotational Normal Form (DNF), which describes an273
array by its shape together with a function describing its value at every index, and the Operational Form274
(OF) which describes it on the level of the memory layout. Programs written at the DNF level do not275
presume knowledge of a hardware architecture. Reasoning at the DNF level is thus completely hardware276
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agnostic. By repeatedly applying a set of terminating rewrite rules, any array expression can be reduced to277
its DNF (Mullin and Thibault, 1994; Chetioui et al., 2019) — where the resulting array is described at each278
index by indexing into the input arrays and scalar-level operations.279

Given information about the hardware architecture and the memory layout of the arrays, the ψ-280
correspondence theorem (Mullin and Jenkins, 1996) allows transforming a DNF expression into a281
corresponding hardware-dependent OF — in which the access patterns on the array are described in282
terms of start, stride, and length.283

Chetioui et al. investigate the fragment of MoA corresponding to the API identified by Burrows et al.,284
and show that for programs based on it, DNF reduction is indeed canonical, which draws appeal to MoA as285
a framework for the optimization of PDE solvers based on FDM.286

We give an informal overview of some operations at the DNF and OF levels below. We refer the interested287
reader to previous work for formal definitions (Chetioui et al., 2021; Mullin, 1988).288

DNF Operations289

The dimension of an array A is denoted dim(A). It corresponds to the number of axes of the array. For290
dim(A) = n, the shape of A is an n-element vector ρ(A) = 〈s0, . . . , sn−1〉 where si is the length of axis291
i. The total number of elements (or size) of A is given by the product of the shape, Πρ(A) = Πn−1

i=0 si.292

In the definitions below A stands for an arbitrary array with dimension n and shape as defined above.293
Further, we use the following array in examples:294

M =




1 2
3 4
5 6




Thus, ρ(M) = 〈3, 2〉.295

The relevant MoA operations on the DNF level are:296

• the indexing function ψ, which takes an index i into an array and returns the subarray at the indexed
position. When i’s length equals the dimension of the array, i is a total index. Otherwise, it is partial.
〈〉 ψ A = A holds. For our example, we have

〈2〉 ψ M = 〈5, 6〉
ρ(〈2〉 ψ M) = 〈2〉

• the reshape function that takes an array A and a shape s such that Πs = Πρ(A), and creates a new
array with shape s containing the elements of A. Thus, ρ(reshape(s, A)) = s holds. For example,

reshape(M, 〈2, 3〉) =

(
1 2 3
4 5 6

)

• a rotation function rotate that takes an array A, an axis j and an offset o, and shift A by o along its jth

axis. The shape is unchanged, i.e. ρ(rotate(A, j, o)) = ρ(A) holds. We give a few examples of how
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rotation behaves on axis 0 and 1 of M:

rotate(M, 0, 1) =




5 6
1 2
3 4


 ,

rotate(M, 0,−1) =




3 4
5 6
1 2


 ,

rotate(M, 1, 1) =




2 1
4 3
6 5


 .

ψ-Reduction297

Mullin and Thibault described a rewriting system for MoA expressions at the DNF level, referred to as298
ψ-reduction. They conjectured that ψ-reduction is canonical — and thus takes any expression to its unique299
DNF. This conjecture was proven to hold by Chetioui et al. for the fragment of the rewriting system required300
by the array API identified by Burrows et al. (Chetioui et al., 2019). ψ-reduction essentially consists of rules301
that move indexing operations inwards — until eventually, the expression does not contain any collective302
operation, but consists only of indexing and scalar operations. As a consequence, it is guaranteed that the303
resulting array expression can be computed without the need to materialize any intermediate array. Because304
the rewriting system is canonical, another consequence is that the form in which we choose to express305
our computation is irrelevant: all equivalent expressions in the language of MoA reduce to the same DNF306
expression.307

OF Operations308

At the OF level, we assume knowledge of the target architecture, and an intended memory layout of the309
array. The central MoA operations on the OF level are:310

• the family of lifting operations liftj that take two natural numbers d, q such that d · q = sj , and reshape311
A into the shape 〈s0, . . . , sj−1, d, q, sj+1, . . . , sn−1〉;312

• the flattening function rav that transforms a multidimensional array into its linear representation in313
memory. Thus, ρ(rav(A)) = 〈Πρ(A)〉 holds;314

• the mapping function γ, which takes a shape s with Πs = Πρ(A) and a total index into A and returns315
the corresponding index into rav(A). In this paper, we assume a row-major ordering.316

The OF operations presented here are crucial to the theory of MoA. We thus include them for the sake of317
completion. These operations however do not appear explicitly in the development of our methodology.318

3.1.3 Initial Magnolia Implementation319

We implemented a PDE solver using the MoA array API. The implementation consists of four320
components:321

1. a specification of the necessary MoA types and operations, with axioms asserting that they respect the322
relevant properties;323

2. a foreign API exposing the core types and operations of the MoA specification;324
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3. an external implementation of the foreign API in a host language (C++);325

4. an implementation of the PDE solver built upon the external MoA building blocks.326

The ψ-calculus conflates arrays, indices, shapes, and scalars into a single array type. While convenient in327
the formalism, we distinguish these types in our Magnolia implementation for ease of reasoning, and to328
leverage the language’s type system to avoid programming errors.329

Listing 3 shows the API from Burrows et al. in the language of MoA.330

Listing 3. An array API for FDM solvers in Magnolia.
s i g n a t u r e ArrayAPI = {331

type Array;332
type E;333

334
type Axis;335
type Index;336
type Offset;337

338
/* Scalar-Scalar operations */339
f u n c t i o n _+_(lhs: E, rhs: E): E;340
f u n c t i o n _-_(lhs: E, rhs: E): E;341
f u n c t i o n _*_(lhs: E, rhs: E): E;342
f u n c t i o n _/_(lhs: E, rhs: E): E;343

344
/* Scalar-Array operations */345
f u n c t i o n _+_(lhs: E, rhs: Array): Array;346
// ... prototypes as above for _-_, _*_, _/_347

348
/* Array-Array operations */349
f u n c t i o n _+_(lhs: Array, rhs: Array): Array;350
// ... prototypes as above for _-_, _*_, _/_351

352
/* Rotation */353
f u n c t i o n rotate(array: Array, axis: Axis, offset: Offset): Array;354

355
/* Indexing */356
f u n c t i o n psi(ix: Index, array: Array): E;357

}358

The declaration of the types and operations form an algebraic signature. We augment that signature with359
semantic properties in the form of axioms to obtain a concept. Listing 4 relates each array-level arithmetic360
operation in the API to its corresponding scalar-level operation (Burrows et al., 2018; Chetioui et al., 2019).361
The axioms for all binary operations follow the same pattern, we hence only show axiom bodies for the +362
operation for the sake of brevity.363

Listing 4. Axioms for the arithmetic operations of our array API.
concept ArrayAPI_ArithmeticAxioms = {364

r e q u i r e ArrayAPI;365
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366
/* Scalar-Array Axioms */367
axiom scalarBinaryPlusAxiom(lhs: E, rhs: Array, ix: Index) {368

a s s e r t psi(ix, lhs + rhs) == lhs + psi(ix, rhs);369
}370
// axiom scalarBinarySubAxiom(lhs: E, rhs: Array, ix: Index)371
// axiom scalarMulAxiom(lhs: E, rhs: Array, ix: Index)372
// axiom scalarDivAxiom(lhs: E, rhs: Array, ix: Index)373

374
/* Array-Array Axioms */375
axiom arrayBinaryPlusAxiom(lhs: Array, rhs: Array, ix: Index) {376

a s s e r t psi(ix, lhs + rhs) == lhs + psi(ix, rhs);377
}378
// axiom arrayBinarySubAxiom(lhs: Array, rhs: Array, ix: Index)379
// axiom arrayMulAxiom(lhs: Array, rhs: Array, ix: Index)380
// axiom arrayDivAxiom(lhs: Array, rhs: Array, ix: Index)381

}382

The specifications in Listing 3 are (straightforwardly) implemented as external C++ functions and types,383
not shown here. Lastly, Listing 5 shows our implementation of one full step of the PDE.384

Listing 5. Implementation of one full step of the PDE solver in Magnolia.
/* Solver */385
procedure step(upd u0: Array, upd u1: Array, upd u2: Array,386

obs nu: Float, obs dx: Float, obs dt: Float) {387
var _1 = one(): Float;388
var _2 = two(): Float;389

390
var c0 = _1/_2/dx;391
var c1 = _1/dx/dx;392
var c2 = _2/dx/dx;393
var c3 = nu;394
var c4 = dt/_2;395

396
c a l l allSubsteps(u0, u1, u2, c0, c1, c2, c3, c4);397

}398
399

procedure allSubsteps(upd u0: Array, upd u1: Array, upd u2: Array,400
obs c0: Float, obs c1: Float, obs c2: Float,401
obs c3: Float, obs c4: Float) {402

var v0 = u0;403
var v1 = u1;404
var v2 = u2;405

406
v0 = substep(v0, u0, u0, u1, u2, c0, c1, c2, c3, c4);407
v1 = substep(v1, u1, u0, u1, u2, c0, c1, c2, c3, c4);408
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v2 = substep(v2, u2, u0, u1, u2, c0, c1, c2, c3, c4);409
u0 = substep(u0, v0, u0, u1, u2, c0, c1, c2, c3, c4);410
u1 = substep(u1, v1, u0, u1, u2, c0, c1, c2, c3, c4);411
u2 = substep(u2, v2, u0, u1, u2, c0, c1, c2, c3, c4);412

}413
414

f u n c t i o n substep(u: Array, v: Array, u0: Array,415
u1: Array, u2: Array, c0: Float,416
c1: Float, c2: Float, c3: Float,417
c4: Float): Array =418

u + c4 * (c3 * (c1 *419
(rotate(v, zero(), -one(): Offset) +420
rotate(v, zero(), one(): Offset) +421
rotate(v, one(): Axis, -one(): Offset) +422
rotate(v, one(): Axis, one(): Offset) +423
rotate(v, two(): Axis, -one(): Offset) +424
rotate(v, two(): Axis, one(): Offset)) - three() * c2 * u0) -425

c0 * ((rotate(v, zero(), one(): Offset) -426
rotate(v, zero(), -one(): Offset)) * u0 +427

(rotate(v, one(): Axis, one(): Offset) -428
rotate(v, one(): Axis, -one(): Offset)) * u1 +429

(rotate(v, two(): Axis, one(): Offset) -430
rotate(v, two(): Axis, -one(): Offset)) * u2));431

432
/* Float utils */433
r e q u i r e f u n c t i o n -_(f: Float): Float;434
r e q u i r e f u n c t i o n one(): Float;435
r e q u i r e f u n c t i o n two(): Float;436
r e q u i r e f u n c t i o n three(): Float;437

438
/* Axis utils */439
r e q u i r e f u n c t i o n zero(): Axis;440
r e q u i r e f u n c t i o n one(): Axis;441
r e q u i r e f u n c t i o n two(): Axis;442

443
/* Offset utils */444
r e q u i r e f u n c t i o n one(): Offset;445
r e q u i r e f u n c t i o n -_(o: Offset): Offset;446

3.2 Deriving Optimization Rules447

Armed with a thorough understanding of the problem, we can now derive semantics-preserving448
optimization rules — hardware-specific or otherwise.449
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Before we can apply rewriting rules defined using MoA to our program, we need to change its level of450
abstraction, i.e. go from an implementation that describes the resulting array using whole-array operations451
to one that describes its value at every index. Consider the ToIxwiseGenerator concept in Listing 6.452

The toIxwiseGenerator axiom consists of a single assertion, which describes the behavior453
of the substepIx function when all of its arguments are universally quantified distinct variables.454
The right-hand side of the equation is thus a valid implementation for substepIx. Because this455
function is not implemented in the original program, we can use the generate transformation with456
ToIxwiseGenerator to generate an implementation of substepIx in the implementation given457
in Listing 5. So as to enable further optimizations, generate unfolds function calls in the right-hand side of458
the equation. The resulting index-level code is shown in Listing 7.459

Listing 6. A generator for an index-level implementation of substep.
concept ToIxwiseGenerator = {460

type Array;461
type Float;462
type Index;463

464
f u n c t i o n substepIx(u: Array, v: Array, u0: Array,465

u1: Array, u2: Array, c0: Float,466
c1: Float, c2: Float, c3: Float,467
c4: Float, ix: Index): Float;468

469
f u n c t i o n substep(u: Array, v: Array, u0: Array,470

u1: Array, u2: Array, c0: Float,471
c1: Float, c2: Float, c3: Float,472
c4: Float): Array;473

474
f u n c t i o n psi(ix: Index, array: Array): Float;475

476
axiom toIxwiseGenerator(u: Array, v: Array, u0: Array,477

u1: Array, u2: Array, c0: Float,478
c1: Float, c2: Float, c3: Float,479
c4: Float, ix: Index) {480

a s s e r t substepIx(u, v, u0, u1, u2, c0, c1, c2, c3, c4, ix) ==481
psi(ix, substep(u, v, u0, u1, u2, c0, c1, c2, c3, c4));482

}483
}484

Listing 7. Index-level implementation of substep in Magnolia.
485

r e q u i r e f u n c t i o n psi(ix: Index, array: Array): Float;486
487

f u n c t i o n substepIx(u: Array, v: Array, u0: Array,488
u1: Array, u2: Array, c0: Float,489
c1: Float, c2: Float, c3: Float,490
c4: Float, ix: Index): Float =491
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psi(ix, u + c4 * (c3 * (c1 *492
(rotate(v, zero(): Axis, -one(): Offset) +493
rotate(v, zero(): Axis, one(): Offset) +494
rotate(v, one(): Axis, -one(): Offset) +495
rotate(v, one(): Axis, one(): Offset) +496
rotate(v, two(): Axis, -one(): Offset) +497
rotate(v, two(): Axis, one(): Offset)) -498

three() * c2 * u0) - c0 *499
((rotate(v, zero(): Axis, one(): Offset) -500

rotate(v, zero(): Axis, -one(): Offset)) * u0 +501
(rotate(v, one(): Axis, one(): Offset) -502
rotate(v, one(): Axis, -one(): Offset)) * u1 +503

(rotate(v, two(): Axis, one(): Offset) -504
rotate(v, two(): Axis, -one(): Offset)) * u2)));505

}506

To make use of substepIx within the program, we need to replace calls to substep with calls to a507
scheduling function that uses substepIx to describe the value of the array at every index. We use the508
program transformation rewrite ... with ToIxwise 1 to achieve that, with ToIxwise a concept509
of Listing 8. Throughout the rest of the paper, we use the term schedule like in Halide (Ragan-Kelley et al.,510
2012).511

Listing 8. A concept with a rewrite rule from substep to a new scheduling function.
concept ToIxwise = {512

type Array;513
type Float;514

515
f u n c t i o n substep(u: Array, v: Array, u0: Array,516

u1: Array, u2: Array, c0: Float,517
c1: Float, c2: Float, c3: Float,518
c4: Float): Array;519

520
f u n c t i o n schedule(u: Array, v: Array, u0: Array,521

u1: Array, u2: Array, c0: Float,522
c1: Float, c2: Float, c3: Float,523
c4: Float): Array;524

525
axiom toIxwiseRule(u: Array, v: Array, u0: Array,526

u1: Array, u2: Array, c0: Float,527
c1: Float, c2: Float, c3: Float,528
c4: Float) {529

a s s e r t substep(u, v, u0, u1, u2, c0, c1, c2, c3, c4) ==530
schedule(u, v, u0, u1, u2, c0, c1, c2, c3, c4);531

}532
}533
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Magnolia does not expose native looping constructs. For that reason, the implementation of schedule534
is done in the host language. The schedule function uses the substepIx function in Listing 7 to535
describe the content of the result array at every index.536

From that point onwards, we can use MoA to derive transformation rules on our program.537

3.2.1 Hardware-Agnostic Transformation Rules538

In their work on embedding Burrows et al.’s array API for FDM solvers in MoA, Chetioui et al. outline a539
rewriting system sufficient to transform a program based on this API to its DNF. This rewriting system is540
canonical, i.e. rewriting always terminates, and the order in which the rules are applied is inconsequential.541

Rewriting rules at the DNF level do not require hardware knowledge, and therefore constitute hardware-542
agnostic transformation rules. We show an implementation of these rules in Magnolia in Listing 9.543

Listing 9. The DNF rewriting rules in Magnolia.
concept GenericBinopRules = {544

type E;545
type Array;546
type Index;547

548
f u n c t i o n binop(lhs: E, rhs: E): E;549
f u n c t i o n binop(lhs: E, rhs: Array): Array;550
f u n c t i o n binop(lhs: Array, rhs: Array): Array;551
f u n c t i o n psi(ix: Index, array: Array): E;552

553
// Rule 1554
axiom binopArrayRule(ix: Index, lhs: Array, rhs: Array) {555

a s s e r t psi(ix, binop(lhs, rhs)) ==556
binop(psi(ix, lhs), psi(ix, rhs));557

}558
559

// Rule 2560
axiom binopScalarRule(ix: Index, lhs: E, rhs: Array) {561

a s s e r t psi(ix, binop(lhs, rhs)) == binop(lhs, psi(ix, rhs));562
}563

}564
565

concept DNFRules = {566
use GenericBinopRules[ binop => _+_567

, binopScalarRule => addScalarRule568
, binopArrayRule => addArrayRule569
];570

use GenericBinopRules[ binop => _-_571
, binopScalarRule => subScalarRule572
, binopArrayRule => subArrayRule573
];574

use GenericBinopRules[ binop => _*_575
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, binopScalarRule => mulScalarRule576
, binopArrayRule => mulArrayRule577
];578

use GenericBinopRules[ binop => _/_579
, binopScalarRule => divScalarRule580
, binopArrayRule => divArrayRule581
];582

583
type Axis;584
type Offset;585

586
f u n c t i o n rotate(array: Array, axis: Axis, offset: Offset): Array;587
f u n c t i o n rotateIx(ix: Index, axis: Axis, offset: Offset): Index;588

589
// Rule 3590
axiom rotateRule(ix: Index, array: Array, axis: Axis,591

offset: Offset) {592
a s s e r t psi(ix, rotate(array, axis, offset)) ==593

psi(rotateIx(ix, axis, offset), array);594
}595

}[ E => Float ];596

As explained in Subsubsection 3.1.2, applying the DNF rules pushes computations down from the597
array-level to the index-level, i.e. the resulting computations are devoid of whole-array operations and598
contain only indexing and scalar arithmetic operations.599

Table 1 shows runtime results for our PDE solver implementation in Magnolia, before and after full DNF600
reduction using the DNF rewriting rules. DNF reduction speeds up the code by a factor of roughly 4.18×601
and significantly reduces memory usage. At the DNF level, the expression is written in terms of scalar602
and indexing operations, eliminating the need to compute temporary arrays, and increasing computational603
density. This experiment shows that such a rewriting system gives the ability to write programs using604
whole-array operations without losing out on the benefits of writing index-level code. The ability to write605
algorithms in different ways without inducing a loss of performance is key to the productive development606
of performant code.607

Wall time (in seconds)
Before DNF reduction 323.02
After DNF reduction 42.26

Table 1. Execution time (in seconds) of the 3-dimensional PDE solver Magnolia implementation compiled
to C++, with and without reduction to DNF. The code is compiled with gcc 10.2.1 with optimization level
O3. The space dimensions are 256× 256× 256 and the solver is run for 50 timesteps. The code is run 10
times on the Intel Xeon Silver 4112 CPU, and the time measurements are averaged.

3.2.2 Hardware-Specific Transformation Rules608

Which hardware-specific transformation rules are relevant to implement is by nature dependent on the609
underlying hardware architecture we are interested in. For example, Chetioui et al.’s previous work on610
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formalizing PDE computations in MoA gave rise to rules for introducing padding into array expressions.611
Their work also discusses rewrites rules that use the dimension lifting operation, which is a reshape612
operation with the explicit purpose of matching the shape of arrays with characteristics of the underlying613
hardware. E.g. lifting by d1 across the first axis allows one to scatter the resulting subarrays across614
d1 processes; or, lifting by 4 across the last axis of an array of 32-bit floats allows one to vectorize615
computations on an architecture with 128-bit vector registers. The hardware architecture combined with616
the data dependencies of the algorithm determine the shape and layout of the arrays.617

We discuss two examples of such hardware-dependent rewriting systems below.618

Example: Dimension lifting over several cores619

At the DNF level, our concern was to express our algorithm in a canonical form, without paying any620
mind to hardware-related concerns. A contrario, our concern at the OF level is to make the best use of the621
hardware available. The rewrites we express are thus often concerned with changing the schedule of our622
computations. Scheduling is handled outside of Magnolia in our example, by the schedule function.623

Listing 10 showcases a rewriting rule for moving from our initial scheduling function to one that624
parallelizes the computation over several cores, the number of which can be parameterized externally.625

Listing 10. The rewriting rules for distributing the computation on several cores.
concept OFLiftCores = {626

type Array;627
type Float;628
type Axis;629
type Nat;630

631
f u n c t i o n nbCores(): Nat;632

633
f u n c t i o n scheduleThreaded(634

u: Array, v: Array,635
u0: Array, u1: Array, u2: Array,636
c0: Float, c1: Float, c2: Float, c3: Float, c4: Float,637
nbThreads: Nat638

): Array;639
640

f u n c t i o n schedule(641
u: Array, v: Array,642
u0: Array, u1: Array, u2: Array,643
c0: Float, c1: Float, c2: Float, c3: Float, c4: Float644

): Array;645
646

axiom liftCoresRule(647
u: Array, v: Array,648
u0: Array, u1: Array, u2: Array,649
c0: Float, c1: Float, c2: Float, c3: Float, c4: Float650

) {651
a s s e r t schedule(u, v, u0, u1, u2, c0, c1, c2, c3, c4) ==652
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scheduleThreaded(u, v, u0, u1, u2, c0, c1,653
c2, c3, c4, nbCores());654

}655
}656

The implementation of the new scheduleThreaded function must also be provided externally.657
Because the schedule is separate from the algorithm, the cost of expressing scheduling rewrites is mostly658
the cost of implementing a new schedule. Once a schedule is implemented, it can be reused for algorithms659
exhibiting similar data dependency patterns, and to target similar hardware. The cost of implementing660
scheduling rewrites thus decreases as more schedules are implemented, and more problems are explored.661

Example: Padding computations662

Figure 2 shows the dependency patterns for one third of a half-step of the PDE across the last axis663
of the array. The element at index i at time t + 1 depends on the elements at index i, (i − 1) mod N ,664
and (i + 1) mod N at time t. The modulo operation serves to index the right dependencies for the first665
(respectively last) element of the array, where decrementing (respectively incrementing) the index would666
create an out-of-bounds index. Modulo operations are still expensive, even on modern hardware (Lemire667
et al., 2019). Additionally, if N is large, the computations at the boundary need to access elements that are668
far apart in memory — therefore benefitting less from data locality than the computations in the middle of669
the array.670

t

0

1

. . .

N − 2

N − 1

t+ 1

. . .

t+ 2

. . .

Figure 2. The dependency pattern for one third of a half-step of the PDE across the last axis of the array.
Each column represents an array of length N indexed from 0 to N − 1 for a given timestep. The element at
index i of the array at time t+ 1 depends on the elements at indices i, (i− 1) mod N and (i+ 1) mod N
of the array at time t.

Chetioui et al. previously showed that padding is a way to eliminate these modulo computations and to671
increase data locality, at the cost of duplicating data in memory (Chetioui et al., 2021).672

Figure 3 shows the dependency patterns for one third of a half-step of the PDE across the last axis of the673
array when the array is padded. In that case, the computation at the boundaries of the array can be rewritten674
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to depend on three adjacent elements in the array. The modulo computation can also be eliminated. We pay675
for these improvements by using more space, and by refilling the padding before every timestep.676

t

0

1

. . .

N − 2

N − 1

t+ 1

. . .

t+ 2

. . .

Figure 3. The dependency pattern for one third of a half-step of the PDE across the last axis of the array
when the array is padded once on each side on the last axis. Each column represents an array of length N
indexed from 0 to N − 1 for a given timestep. The elements colored in the same color have the same value.
The element at index i of the array at time t+ 1 depends on the elements at indices i, i− 1 and i+ 1 of the
array at time t.

Listing 11 shows an implementation of the padding transformation rules in Magnolia.677

Listing 11. The rewriting rules for padding.
concept OFPad = {678

type Array;679
type Float;680

681
procedure allSubsteps(upd u0: Array, upd u1: Array, upd u2: Array,682

obs c0: Float, obs c1: Float, obs c2: Float,683
obs c3: Float, obs c4: Float);684

685
procedure refillPadding(upd a: Array);686

687
f u n c t i o n schedulePadded(u: Array, v: Array,688
u0: Array, u1: Array, u2: Array, c0: Float,689
c1: Float, c2: Float, c3: Float, c4: Float): Array;690

691
f u n c t i o n schedule(u: Array, v: Array,692

u0: Array, u1: Array, u2: Array,693
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c0: Float, c1: Float, c2: Float,694
c3: Float, c4: Float): Array;695

696
axiom padRule(u: Array, v: Array, u0: Array, u1: Array, u2: Array,697

c0: Float, c1: Float, c2: Float, c3: Float,698
c4: Float) {699

a s s e r t schedule(u, v, u0, u1, u2, c0, c1, c2, c3, c4) ==700
{ var result =701

schedulePadded(u, v, u0, u1, u2, c0, c1, c2, c3, c4);702
c a l l refillPadding(result);703
va lue result;704

};705
}706

707
type Index;708
type Axis;709
type Offset;710
f u n c t i o n rotateIx(ix: Index, axis: Axis, offset: Offset): Index;711
f u n c t i o n rotateIx_padded(ix: Index, axis: Axis, offset: Offset)712
: Index;713

714
axiom rotateIxPadRule(ix: Index, axis: Axis, offset: Offset) {715

a s s e r t rotateIx(ix, axis, offset) ==716
rotateIx_padded(ix, axis, offset);717

}718
}719

The implementation in Listing 11 assumes that the input arrays are padded arbitrarily across each axis in720
the host language, in a way that is compatible with the new rotateIx_padded function. Details such721
as the amount of padding across each axis are therefore not visible in Magnolia. This is however purely a722
design choice, insofar as we have chosen to make the Index type completely opaque. This has the benefit723
of making the program naturally shape polymorphic to a degree — though the program is not as interesting724
for input arrays with initial number of dimensions different than three.725

We can control padding across each axis more explicitly by specializing our code further. This can also726
be achieved using transformation rules — we describe the steps below.727

Listing 12 shows an axiom following the generator pattern to specialize the shape polymorphic728
substepIx to three dimensions. As previously, the call to substepIx on the right-hand side of729
the equation is unfolded to enable additional optimizations.730

Listing 12. A generator for a 3D implementation of substepIx.
concept OFSpecializeSubstepGenerator = {731

type Index;732
type Array;733
type Float;734
type ScalarIndex;735
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736
f u n c t i o n mk_ix(i: ScalarIndex, j: ScalarIndex, k: ScalarIndex)737

: Index;738
739

f u n c t i o n substepIx(u: Array, v: Array, u0: Array,740
u1: Array, u2: Array, c0: Float, c1: Float,741
c2: Float, c3: Float, c4: Float, ix: Index): Float;742

743
f u n c t i o n substepIx3D(u: Array, v: Array, u0: Array,744

u1: Array, u2: Array, c0: Float, c1: Float, c2: Float,745
c3: Float, c4: Float, i: ScalarIndex, j: ScalarIndex,746
k: ScalarIndex): Float;747

748
axiom specializeSubstepRule(u: Array, v: Array, u0: Array,749

u1: Array, u2: Array, c0: Float, c1: Float, c2: Float,750
c3: Float, c4: Float, i: ScalarIndex, j: ScalarIndex,751
k: ScalarIndex) {752

a s s e r t substepIx3D(u, v, u0, u1, u2, c0, c1, c2,753
c3, c4, i, j, k) ==754

substepIx(u, v, u0, u1, u2, c0, c1, c2, c3, c4,755
mk_ix(i, j, k));756

}757
};758

Recall the original implementation of substepIx given in Listing 7. Every indexing operation of some759
array a in the resulting implementation of substepIx3D is now either of the form psi(mk_ix(i, j760
, k), a), or of the form psi(rotateIx(mk_ix(i, j, k), x, o), a) for some axis x and761
some offset o.762

Listing 13 introduces a specialized psi function for 3D arrays. It does that by introducing three763
projection functions ix0, ix1, and ix2 on Indexes. General indexing operations of the form764
psi(mk_ix(i, j, k), a) are first specialized to expressions of the form psi(ix0(mk_ix(765
i, j, k)), ix1(mk_ix(i, j, k)), ix2(mk_ix(i, j, k)), a) by an application of766
specializePsiRule — which can then be reduced to psi(i, j, k, a) via three applications of767
reduceMakeIxRule.768

Listing 13. Specializing calls to the indexing function ψ.
concept OFSpecializePsi = {769

type Index;770
type Array;771
type E;772
type ScalarIndex;773

774
/* 3D index projection functions */775
f u n c t i o n ix0(ix: Index): ScalarIndex;776
f u n c t i o n ix1(ix: Index): ScalarIndex;777
f u n c t i o n ix2(ix: Index): ScalarIndex;778
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779
/* 3D index constructor */780
f u n c t i o n mk_ix(i: ScalarIndex, j: ScalarIndex, k: ScalarIndex)781
: Index;782

783
f u n c t i o n psi(ix: Index, array: Array): E;784
f u n c t i o n psi(i: ScalarIndex, j: ScalarIndex, k: ScalarIndex,785

array: Array): E;786
787

axiom specializePsiRule(ix: Index, array: Array) {788
a s s e r t psi(ix, array) == psi(ix0(ix), ix1(ix), ix2(ix), array);789

}790
791

axiom reduceMakeIxRule(i: ScalarIndex, j: ScalarIndex,792
k: ScalarIndex) {793

var ix = mk_ix(i, j, k);794
a s s e r t ix0(ix) == i;795
a s s e r t ix1(ix) == j;796
a s s e r t ix2(ix) == k;797

}798
}[ E => Float ];799

We also want to call our specialized version of psi instead of the general one in expressions now of the800
form psi(ix0(rx), ix1(rx), ix2(rx), a) where rx = rotateIx(mk_ix(i, j, k),801
x, o). For that purpose, we can apply the rewriting rules defined in Listing 14. These rewriting rules802

essentially unfold rotateIx. All the indexing operations in substepIx3D now use the specialized803
form of psi, and the scalar indices are either constants or of the form (i + o)% s, with i a scalar804
index, o an offset, and s the length of the relevant axis of the array.805

Listing 14. A transformation rules to specialize the index rotation operation.
concept OFReduceMakeIxRotate = {806

use s i g n a t u r e(OFSpecializePsi);807
808

type Axis;809
type Offset;810

811
f u n c t i o n zero(): Axis;812
f u n c t i o n one(): Axis;813
f u n c t i o n two(): Axis;814

815
f u n c t i o n rotateIx(ix: Index, axis: Axis, offset: Offset): Index;816

817
type AxisLength;818

819
f u n c t i o n shape0(): AxisLength;820
f u n c t i o n shape1(): AxisLength;821
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f u n c t i o n shape2(): AxisLength;822
823

f u n c t i o n _+_(six: ScalarIndex, o: Offset): ScalarIndex;824
f u n c t i o n _%_(six: ScalarIndex, sc: AxisLength): ScalarIndex;825

826
axiom reduceMakeIxRotateRule(i: ScalarIndex, j: ScalarIndex,827

k: ScalarIndex, array: Array, o: Offset) {828
var ix = mk_ix(i, j, k);829
var s0 = shape0();830
var s1 = shape1();831
var s2 = shape2();832

833
a s s e r t ix0(rotateIx(ix, zero(), o)) == (i + o) % s0;834
a s s e r t ix0(rotateIx(ix, one(), o)) == i;835
a s s e r t ix0(rotateIx(ix, two(), o)) == i;836

837
a s s e r t ix1(rotateIx(ix, zero(), o)) == j;838
a s s e r t ix1(rotateIx(ix, one(), o)) == (j + o) % s1;839
a s s e r t ix1(rotateIx(ix, two(), o)) == j;840

841
a s s e r t ix2(rotateIx(ix, zero(), o)) == k;842
a s s e r t ix2(rotateIx(ix, one(), o)) == k;843
a s s e r t ix2(rotateIx(ix, two(), o)) == (k + o) % s2;844

}845
}846

At this point, we can reintroduce padding using the rules previously defined in Listing 11, and renaming847
schedulePadded to schedule3DPadded, which will need to be pulled into scope from an external848
implementation somewhere down the line.849

We decide to implement this function externally such that the array is always circularly padded at least850
once on each side of each axis — a decision made based on the width of the stencil. With that knowledge,851
we can completely eliminate the modulo operations in substepIx3D. Listing 15 defines the relevant852
rewriting rules.853

Listing 15. Elimination of the modulo operations in the program.
// We suppose here that the amount of padding is sufficient across854
// each axis for every indexing operation.855
concept OFEliminateModuloPadding = {856

use s i g n a t u r e(OFReduceMakeIxRotate);857
858

type Array;859
type Float;860

861
f u n c t i o n psi(i: ScalarIndex, j: ScalarIndex, k: ScalarIndex,862

a: Array): Float;863
864
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axiom eliminateModuloPaddingRule(i: ScalarIndex, j: ScalarIndex,865
k: ScalarIndex, a: Array, o: Offset) {866

var s0 = shape0();867
var s1 = shape1();868
var s2 = shape2();869

870
a s s e r t psi((i + o) % s0, j, k, a) == psi(i + o, j, k, a);871
a s s e r t psi(i, (j + o) % s1, k, a) == psi(i, j + o, k, a);872
a s s e r t psi(i, j, (k + o) % s2, a) == psi(i, j, k + o, a);873

}874
}875

Listing 16 shows how we apply the rewriting rules defined above using Magnolia’s rewriting system to876
build a new program. Note that, as we are in the case when an implementation for schedulePadded877
is not in scope before the rules defined in OFPad are applied, we can replace the rewrite by a simple878
renaming — as we do in the example. To build a valid program, we also need to pull in scope external879
functions, such as the relevant schedules, and psi. These come from ExternalNeededFunctions880
in the example.881

Listing 16. Putting all the rewriting rules together.
program SpecializedAndPaddedProgram = {882

use ( r e w r i t e883
( r e w r i t e884

( r e w r i t e885
( r e w r i t e886

(g e n e r a t e OFSpecializeSubstepGenerator in887
DNFImplementation)888

with OFSpecializePsi 10)889
with OFReduceMakeIxRotate 20)890

with OFPad[schedulePadded =>891
schedule3DPadded] 1)892

with OFEliminateModuloPadding 10);893
894

use ExternalNeededFunctions; // pulling in psi, schedules, etc...895
}896

Table 2 gives an overview of the performance improvements brought by the rewriting rules. On the897
specific processor considered, padding does not seem to enable any significant speedup for our original898
implementation. Specializing the code to our specific 3D indexing function makes the code run faster in899
the unpadded case, and seems to allow a significant speedup from the unpadded case to the padded case —900
the generated code runs nearly twice as fast in that case.901

Crucially, this performance improvement did not require any reimplementation of the core algorithm.902
Building our core algorithm generically allows us to introduce specialized underlying types and operations,903
once more information is known about our input data or the underlying hardware architecture. The Magnolia904
term rewriting engine then allows us to introduce new operations and to replace calls to existing concrete905
implementations with calls to other functions with possibly different argument lists.906
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Unpadded case Padded case
Non-specialized indexing 689.46 675.12

Specialized indexing 540.3 285.55

Table 2. Execution time (in seconds) of the 3-dimensional PDE solver Magnolia implementation compiled
to C++ with specialized indexing and with or without padding. The code is compiled with gcc 10.2.0 with
optimization level O3. The space dimensions are 512× 512× 512 and the solver is run for 50 timesteps.
The code is run on the ThunderX2 CN9980 CPU. In the padded case, each axis is padded circularly exactly
once on both ends.

This is another twist of generic programming: rewrite and generate allow to replace operations (or907
combinations of operations) in a generic module with others that have potentially different argument lists —908
so long as we can describe the behavior of the former at all points in terms of calls to the new operation(s).909

4 DISCUSSION AND RELATED WORK

We presented a methodology for solving the P3 problem on existing and emerging architectures and910
applied it to the domain of array computations. Instead of developing one program to target n hardware911
architectures, we implement a single program, along with hardware-specific rewriting rules. By relating the912
high-level problem to a mathematical basis, we ensure that the set of optimization rules we implement is913
correct, and reusable for problems that can be embedded within the same formalism.914

Magnolia gives developers the tools to write high-level, domain-specific compilers with custom915
optimization rules, and a custom target language. The ability to choose flexibly to which opaque building916
blocks a Magnolia program reduces allows the application of optimization rules at various abstraction917
levels, until the boundary between Magnolia and the external primitives implemented in the host language918
is reached. Our approach is centered around the idea of expressing generic algorithms independently from919
any particular schedule, i.e. independently from any hardware abstraction.920

As we mentioned in Section 1.1, the term schedule as used throughout the paper originates in the921
work of Ragan-Kelley et al. on Halide (Ragan-Kelley et al., 2012). SPIRAL (Puschel et al., 2005) and922
Sequoia (Fatahalian et al., 2006) predate Halide, but make a similar distinction between an algorithm and its923
mapping to the underlying hardware architecture. Halide exposes a set of scheduling primitives from which924
developers can build their own schedules. TVM (Chen et al., 2018) follows this idea and extends Halide’s set925
of scheduling primitives. The set of schedules that can be expressed in such systems is necessarily limited926
by the set of available scheduling primitives. Extending this set requires modifications to the language927
and its compiler, and is thus costly. Recent work by Liu et al. shows that carefully choosing high-level928
rewriting rules on schedules allows optimizing tensor programs beyond what is currently possible in these929
languages (Liu et al., 2022). In our system, schedules are fully specified by the developer. Compared to the930
approach taken by Halide or TVM, the developer has full control over how their computations are executed,931
but incur a higher implementation cost when no scheduling algorithm exists for their particular flavor of932
target hardware architecture. Adding “default” scheduling primitives to Magnolia as a convenience could933
improve the developer experience, and is therefore a consideration for future work.934

MLIR (Lattner et al., 2021) makes heavy use of rewrite rules through the MLIR PatternRewrite935
infrastructure (Vasilache et al., 2022). Their design is influenced by LIFT (Steuwer et al., 2017, 2015),936
another programming language exploiting rewrite rules for high-performance array computations. In LIFT,937
the application of rewrite rules is automated by a stochastic search method. Hagedorn et al. extend LIFT938
specifically for optimizing stencil programs (Hagedorn et al., 2018). Such rewrite approaches are so far939
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limited in that they do not always deliver high enough performance for real-world use (Hagedorn et al.,940
2020). This is in contrast to autoscheduling in Halide, which outperforms human experts on average (Adams941
et al., 2019). Automatic scheduling techniques are key to improving solutions to the P3 problem, and are942
thus an important topic to further explore also for rewrite rules-based optimizers.943

Approaches to optimization based on rewrite rules, such as the one presented here, can benefit from944
rewriting strategies, e.g. for localizing rewrites to only a particular chunk of the input program or for945
traversing the AST in a specific order. Kirchner gives a recent survey of strategic rewriting (Kirchner, 2015).946
Example of tools implementing such strategies include Maude (Clavel et al., 2007; Martı́-Oliet et al., 2005,947
2009) and Stratego (Visser, 2005). Hagedorn et al. introduce a functional approach to high-performance948
code generation based on rewriting strategies (Hagedorn et al., 2020): computations are expressed in the949
RISE programming language, and rewrite rules and strategies in the ELEVATE strategy language. Fu et al.950
(2021) later added a type system to ELEVATE to ensure statically that rewrites are composed correctly. As951
shown throughout the paper, our rewriting system today only provides the ability to apply sets of rewrite952
rules a certain number of times, in sequence. Given a rule e1 = e2, the sequence e1; e1 can be rewritten953
to e2; e1, but not directly to e1; e2. Such a transformation can be expressed today by applying the rule954
e1 = e2 twice, and then applying the opposite rule e2 = e1 once, but this is both embarassingly verbose and955
inefficient. Adding rewriting strategies to Magnolia will unlock those rewrites that are not easily accessible956
today, and thus further improve the system’s code reuse capabilities. The implementation of Magnolia957
strategies is of particular interest, and fits into our larger project of exploring module transformations958
through the lens of Syntactic Theory Functors (Haveraaen and Roggenbach, 2020).959

For future work, we also envision the implementation of an extension to the Magnolia rewriting system960
that supports conditional rewrite rules. Conditional equations can already be expressed in Magnolia, but961
the rewriting system is not yet able to exploit them.962

Whether axioms constitute valid rewriting rules is verifiable by extending Magnolia with formal963
verification tools — insofar as the relevant properties that a program must satisfy can be derived from the964
stated axioms about its external building blocks. The properties asserted about externally implemented965
code can however only be assumed to hold, and constitute the trusted computing base of the whole program.966
Work on connecting verification tools with Magnolia’s specification facilities is already underway, with967
encouraging results (Hamre, 2022).968
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6.2 A CUDA implementation

To showcase the versatility of the approach to generic code transformations and PDE

solvers given in section 6.1, a couple of different versions of the solver were implemented.

Among these were OpenMP and CUDA [36] implementations, to highlight how one could

parallelize key parts of the algorithm to achieve a significant decrease in computing time

on different hardware. In this section we take a closer look at two iterations of the solver

implemented in CUDA C++ to leverage the SIMD parallel processing approach utilized

by Nvidias line of GPUs.

CUDA is an API developed by Nvidia to facilitate general purpose programming on

its lines of GPUs. It is designed to work with high-performance languages such as C,

C++ and Fortran. The GPU does not share most of its memory with the CPU, and as

such we need to introduce a separation between CPU(host) code and GPU(device) code.

In CUDA C++ this is achieved using annotations to mark function as either callable

from CPU only, GPU only or both.

1
2 // executes on the CPU
3 __host__ int addTwo_cpu(int a);
4 // executes on the GPU
5 __device__ int addTwo_gpu(int a);
6 // can be executed on both CPU and GPU
7 __host__ __device__ int addTwo_gpu_cpu(int a);
8 // entry point from CPU to GPU
9 __global__ void kernel ();

Listing 6.1: CUDA Annotations

Program execution starts on the CPU, and in order to access the device side code

we need a way to call device side code from the CPU. This is done via global functions,

also called kernels. Functions annotated as global can be invoked from the CPU and

run device side code. In kernel calls you specify the number of blocks of memory and

threads per block the GPU has available for computation. Since CUDA 5.0, device side

kernel launches are allowed, paving the way for multiple layers of non-uniform device side

memory allocation.

Implementation 1

The backend for the PDE solver presented in section 6.1 is implemented in C++. In the

standard pipeline, magnoliac generates C++ code for the defined Magnolia concepts and

1The code for both implementations are publicly available online [28, 29].
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programs, then compiles the generated code and the user-provided backend using GCC

g++. CUDA-annotated C++ code is not compatible with ISO standard C++, and as

such we we in need of a compiler with CUDA support. For this implementation Nvidias

proprietary NVCC was chosen. It is also a feature-complete C++ compiler up to C++17,

so for our purposes we replaced g++ with NVCC for compilation of all C++ code.

Results

Start

main

loop(steps)

Call step

Call snippetCall ix snippet

Call snippetCall ix snippet

... × 6

Stop

T

F

copy

copy

Figure 6.1: Dataflow between CPU(blue) and GPU(green), 1st iteration of the solver.

The first iteration of runtime results fell short of expectations. One would expect much

faster speeds from a cutting-edge GPU like the Nvidia A100. The times in Table 6.1 are

after 10 steps of the solver, whereas the benchmarks in section 6.1 are after 50 steps.

real 1m12.703s
usr 0m36.333s
sys 0m34.199s

Table 6.1: 10 steps of the CUDA PDE solver with array dimensions 5123, ran on a Nvidia
Volta A100/80GB. Timed in bash with time.

Profiling the binary produced by NVCC, we identified the main causes for the bad

performance.
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Time (%) Total Time (ns) Num Calls Avg (ns) Name
45.8 21931544537 840 26108981.6 cudaMemcpy

38.7 18537571949 720 25746627.7 cudaMalloc

15.4 7377761005 60 32944.5 cudaDeviceReset

This is

highly ineffective, to stay on the GPU as long as possible

Table 6.2: Snippet of gpumemtimesum result generated from nsys profile <pde.bin>.

We see that calls to cudaMemcpy and cudaMalloc account for over 80% of the execu-

tion time. CUDA memory allocations and copies are expensive operations. In the first

iteration of the implementation, memory is allocated and copied between host and device

memory 6 times per solver step. Figure 6.1 depicts the dataflow between CPU and GPU

in the first iteration of the CUDA implementation.

Improvements

Start

main

loop(steps)

Call step

Call snippetCall ix snippet

Call snippetCall ix snippet

... × 6

Stop

copy

T

F
copy

Figure 6.2: Improved dataflow between CPU(blue) and GPU(green)

Following the implementation from section 6.1, we theorized that we could reduce the

number of copies between host and device to a single copy to GPU before solver execution

and a single copy to CPU after, resulting in a significant reduction in execution time. Due

to time constraints, this improved implementation was not completed before the paper
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submission deadline. Figure 6.2 depicts the theorized improved dataflow between GPU

and CPU.

Remark on earlier work

The work presented in Burrows et al. includes runtime experiments for two CUDA ver-

sions implemented in the process. Analyzing the source code for these implementation

provided us with valuable insights in how to approach the the problem. An important

difference between the approach presented in Burrows et al. and the the one presented

in this thesis is the density of the kernel computations. Previous implementations opted

for implementing each operation as separate kernel calls, resulting in low density of com-

putation. In other words, quite large parts of available GPU cores remain unused per

computation. With this in mind, the approach taken in section 6.1 relies on a dense,

inlined step function presented in Chetioui et al. With proper memory management,

the theorized improvement depicted in Figure 6.2 should leverage the cores available to

us on the GPU to a larger degree.
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Chapter 7

Future Work & Conclusion

7.1 Future Work

Even though the thesis process draws to an end, there are multiple places to start if

one would wish to continue the work discussed here. An natural first step would be to

continue the work on the MoA API. Improving the existing code should be prioritized,

as the current state of the code base suffers from a focus on producing compilable code

on a tight deadline. In particular, this meant sacrificing time that could have been spent

fleshing out the array specification. The API in its current form is also prioritizing a

limited subset of the theory to explore the specific API proposed by Burrows et al.

Continuing to investigate the parts of the ψ-calculus not covered in this thesis would

come as a natural continuation. I believe that a logical first extension of the API would

be to fully specify and implement padding, taking it a step closer to its intended state of

usability. One could also move towards extending it to coverONF, both specified in the

generic API and as a step toward observing how implementations on different hardware

may differ.

Although developed independently of existing Magnolia library packages, once in an

acceptable state, integration of the API with the standard library may be useful for future

Magnolia projects.

Completion of the improved CUDA implementation discussed in section 6.2 could add

weight to the argument presented in section 6.1 that generating performant code from

generic languages like Magnolia can compete with existing compiler tools. Chetioui et al.

have already demonstrated promising results for this approach in another domain.
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7.2 Conclusion

In this thesis we have explored the MoA calculus and how it can serve as a foundation for

generic multiarrays. We have presented relevant background theory, creating an arena

for discussion around generic programming and API design. We have showed that one

can abstract hardware specific details away, without losing the ability to target specific

architectures. Implementing a subset of the MoA theory in Magnolia, we have gained

knowledge about how we can leverage the Magnolia type system to go from generic

specifications and concrete implementations while retaining type safety.

As hardware improves, it is critical to keep software portable and maintainable while

retaining performance. This principle is followed by leveraging concepts from generic

programming to abstract away from hardware specific implementations. We have seen

that Magnolia allows us to reason about programs at a higher level, capturing this phi-

losophy. The modularity gained by designing software with a clear separation between

specification and implementation also serves the purpose of forcing developers away from

the typical monolithic structure of large systems, where dependencies are often difficult

to swap out. Haveraaen argues that allocating more time to domain exploration is a cost

effective way to design software long term, and we have been given a taste of this through

the lens of re-use mechanisms in Magnolia such as renamings. We hope to see a gradual

shift in the software design philosophy, towards a more modular future for programming.
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Glossary

ψ-reduction The process of transforming an array expression into an equivalent expres-

sion only using the ψ operator.

AEP Annual Energy Production.

API Application Programming Interface.

APL A Programming Language (APL), an array programming language developed in

the 1960s.

BLDL Bergen Language Design Laboratory.

CPU Central Processing Unit.

CUDA Parallel computing platform developed by Nvidia for their line of GPUs.

DNF Denotational Normal Form.

FLOPS Floating Point Operations Per Second.

GCC GNU Compiler Collection.

GPGPU General-purpose Programming on Graphical Processing Units.

GPU Graphical Processing Unit.

HPC High-performance computing.

Magnolia Magnolia is a programming language based on the theory of institutions.

magnoliac A Magnolia compiler under active development at BLDL.

MoA A Mathematics of Arrays.

MPI Message Passing Interface.

NVCC Nvidia CUDA Compiler.

ONF Operational Normal Form.

OpenBLAS Open Basic Linear Algebra Subprograms.

OpenCL Open Computing Language.

OpenMP Open Multi-Processing, shared-memory multiprocessing programming API.

PDE Partial Differential Equation.

SIMD Single Instruction, Multiple Data.
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SMT Satisfiability Modulo Theories.

VLSI Very Large Scale Integration.
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